• Title/Summary/Keyword: embryo-derived plantlets

Search Result 28, Processing Time 0.019 seconds

Ginkgolides Production in Embryo-derived Ginkgo biloba Plantlet (기내배양한 은행 유식물에서의 Ginkgolide의 생산)

  • Jeon, Mee-Hee;Sung, Sang-Hyun;Jeon, Soon-Hwa;Huh, Hoon;Kim, Young-Choong
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.4
    • /
    • pp.304-308
    • /
    • 1993
  • A platelet activating factor(PAF) antagonist ginkgolides produced from Ginkgo biloba are well known for their potential usage in septic shock and other PAF related diseases. Even though they are extracted from the leaves and on occasion the root bark, the exact biosynthetic site and pathway have not proved yet. In order to locate the enzymes involved and elucidate the biosynthetic site of the compounds, embryo-derived aseptic intact plantlet and plantlet without root have been cultured on 0.3% active carbon-containing solid Murashige and Skoog's medium. The leaves from the six-week-old normal plantlet contained similar amount of ginkgolide B to that of outdoor plant leaves, while the plantlets without root had less than 30% of the ginkgolide B compared to the in vitro intact plantlets. The results suggest that the ginkgolides may be synthesized in the root and transported to the aerial part.

  • PDF

Direct somatic embryogenesis, plant regeneration and genetic transformation of Panax ginseng

  • Park, Yong-Eui;Yang, Deok-Chun;Park, Kwang-Tae;Soh, Woong-Young;Hiroshi Sano
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.85-89
    • /
    • 1999
  • Somatic embryogendesis is one of good examples of the basic research for plant embryo development as well as an important technique for plant biotechnology. This paper describes the direct somatic embryogenesis from zygotic embryos of Panax ginseng is reversely related to normal axis growth of zygotic embryos by the experiment of various chemical treatments. Under the normal growth condition, the apical tips of embryo axis produced an agar-diffusible substance, which suppressed somatic embryo development from cotyledons. Although the cells of zygotic embryos were released from the restraint of embryo axis, various factors were still involved for somatic embryo development. Electron microscopic observation revealed that the ultrastructure of cells of cotyledon epidermis markedly changed before initiation of embryonic cell division, probably indicating reprogramming events into the cells embryogenically determined state. Polar accumulation of endogenous auxin or cell-cell isolation by plasmolysis pre-treatment is the strong inducer for the somatic embryo development. The cells for the process of somatic embryogenesis might be determined by the physiological conditions fo explants and medium compositions. Direct somatic embryos from cotyledons fo ginseng were originated eithrer from single or multiple cells. The different cellular origin of somatic embryos was originated either from single or multiple cell. The different cellular origin of somatic embryos was depended on various developmental stages of cotyledons. Immature meristematic cotyledons produced multiple cell-derived somatic embryos, which developed into multiple embryos. While fully mature cotyledons produced single cell-derived single embryos with independent state. Plasmolysis pretreatment of cotyledons strongly enhanced single cell-derived somatic embryogenesis. Single embryos were converted into normal plantlets with shoot and roots, while multiple embryos were converted into only multiple shoots. GA3 or a chilling treatment was prerequisite for germination and plant conversion. Low concentration of ammonium ion in medium was necessary for balanced growth of root and shoot of plantlets. Therefore, using above procedures, successful plant regeneration of ginseng was accomplished through direct single embryogenesis, which makes it possible to produce genetically transformed ginseng efficently.

  • PDF

High frequency plant regeneration from zygotic-embryo-derived embryogenic cell suspension cultures of watershield (Brasenia schreberi)

  • Oh, Myung Jin;Na, Hye Ryun;Choi, Hong-Keun;Liu, Jang Ryol;Kim, Suk Weon
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on halfstrength MS medium supplemented with $0.3mg\;l^{-1}$ 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to $3mg\;l^{-1}$, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryoderived white friable callus were established using half-strength MS medium supplemented with $0.3mg\;l^{-1}$ 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of water-shield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.

High Frequency of Plant Regeneration through Cyclic Secondary Somatic Embryogenesis in Panax ginseng

  • Kim, Yu-Jin;Lee, Ok-Ran;Kim, Kyung-Tack;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.442-448
    • /
    • 2012
  • Somatic embryogenesis is one of good examples of the basic research for plant embryo development as well as an important technique for plant biotechnology such as medicinally important plants. Single embryos develop into normal plantlets with shoots and roots. Therefore, direct single embryogenesis derived from single cells is highly important for normal plant regeneration. Here we demonstrate that the cyclic secondary somatic embryogenesis in Panax ginseng Meyer is a permanent source of embryogenic material that can be used for genetic manipulations. Secondary somatic embryos were originated directly from the primary somatic embryos on hormone-free Murashige and Skoog medium, and proliferated further in a cyclic manner. EM medium (one third of modified MS medium [MS medium containing half amount of NH4NO3 and KNO3] with 2% to 3% sucrose) favored further development of proliferated secondary somatic embryos into plantlets with root system. The plantlets developed into plants with well-developed taproots in half-strength Schenk and Hildebrandt basal medium supplemented with 0.5% activated charcoal.

The Photoautotrophic Culture System Promotes Photosynthesis and Growth of Somatic Embryo-derived Plantlets of Kalopanax septemlobus (독립영양방식 액체대량배양 시스템하에서 배양한 체세포배 유래 음나무 기내묘의 생장과 광합성)

  • Park, So-Young;Moon, Heung-Kyu;Kim, Yong-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.212-217
    • /
    • 2011
  • A photoautotrophic micropropagation methodology in liquid culture medium has a number of advantages for large-scale propagation of plants. This paper describes an improved system for the mass propagation via somatic embryogenesis of the medicinal plant Kalopanax septemlobus Nakai. Somatic embryo-derived young plantlets of K. septemlobus were cultured either under heterotrophic conditions with sucrose on half-strength MS medium with $30gL^{-1}$ sucrose, under heterotrophic conditions without sucrose, or under photoautotrophic conditions (MS liquid medium without sucrose under forced aeration) for four weeks before transferring the plantlets for acclimatization. Plantlets grown under photoautotrophic conditions had more leaves, higher chlorophyll content, a higher net photosynthetic rate (NPR), and a higher survival rate. The results indicate that the photoautotrophic conditions with a forced ventilation system are effective in enhancing the growth of plantlets and the rate of net photosynthesis. The plantlets grown under photoautotrophic conditions had a high survival rate (92%) upon ex vitro transplantation. Our study shows that autotrophically produced plantlets acclimatize better and sooner upon ex vitro transplantation than conventionally cultured plants.

Mass Production of Calla Lily(Zantedeschia spp. Southern Light) by the Immature Zygotic Embryo Culture (유색칼라(Zantedeschia spp. Southern Light) 미숙배 배양에 의한 다량증식)

  • 고정애;최소라;김현순
    • Korean Journal of Plant Resources
    • /
    • v.16 no.2
    • /
    • pp.160-167
    • /
    • 2003
  • In order to investigate the effects of developmental stage of embryos and plant growth regulators on mass production of Zantedeschia spp. Southern Light, immature zygotic embryos of Zantedeschia spp. Southern Light were cultured on Murashige and Skoog(1962) basal media or containing 2,4-D, NAA and BA. Globular embryos did not grow on any of the 2,4-D, NAA and BA combinations. The most suitable stage of immature zygotic embryo culture on the induction callus and multiple shoot was at early cotyledonary embryo stage, and at this stage of embryos were germinated up to 87.5%. The whitish watery callus and yellowish compact nodular callus produced on all 2,4-D, NAA and BA media. The best combination for inducing embryogenic callus was 0.5 mgL NAA and 1.0 mg/L BA. Whitish watery calli have been subcultured for more than 8 months and have retained their producing ability, Plant regeneration was only obtained by direct shoot development and yellowish compact nodular calli. Abundant plantlets were regenerated from cotyledonary stage of embryo culture on MS medium supplemented with 0.5 mg/L NAA and 1.0 mg/L BA. Supplementation of the media with 10% coconut water showed as the best concentration for plant differentiation from direct developed of shoots. The number of regenerated plants from one embryo could be seperated 25-35s plantlets. All yellowish compact callus-derived plantlets were transferred to pots containing a mixture of vermiculite, perlite and sand(1:1;1 v/v) and 100% of divided plantlets were phenotypically normal.

High frequency plant regeneration system for Nymphoides coreana via somatic embryogenesis from zygotic embryo-derived embryogenic cell suspension cultures

  • Oh, Myung-Jin;Na, Hye-Ryun;Choi, Hong-Keun;Liu, Jang Ryol;Kim, Suk-Weon
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.125-128
    • /
    • 2010
  • Culture conditions were established for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Nymphoides coreana. Zygotic embryos formed pale-yellow globular structures and calluses at a frequency of 85.6% when cultured on half-strength Murashige and Skoog (MS) medium supplemented with 0.3 $mg\;l^{-1}$ of 2,4-D. However, the frequency of pale-yellow globular structures and white callus formation decreased slightly with an increasing concentration of 2,4-D up to 10 $mg\;l^{-1}$ with the frequency rate falling to 16.7%. Cell suspension cultures were established from zygotic embryo-derived calluses using half-strength MS medium supplemented with 0.3 $mg\;l^{-1}$ of 2,4-D. Upon plating onto half-strength MS basal medium, over 92.3% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted into potting soil and achieved full growth to an adult plant in a growth chamber. The high frequency plant regeneration system for Nymphoides coreana established in this study will be useful for genetic manipulation and cryopreservation of this species.

Genetic polymorphism analysis of somatic embryo-derived plantlets of Cymbopogon flexuosus through RAPD assay

  • Bhattacharya, S.;Dey, T.;Bandopadhyay, T.K.;Ghosh, P.D.
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.245-252
    • /
    • 2008
  • The genetic status of somatic embryo-derived plantlets of Cymbopogon flexuosus was examined by randomly amplified polymorphic DNA (RAPD) analysis. Auxins such as 2, 4-dichlorophenoxyacetic acid (2, 4-D) (1-4 mg/l) were used in Murashige and Skoog (MS) medium for induction of calli from rhizomatous explants of Cymbopogon flexuosus. Optimum calli were induced on MS medium supplemented with 2, 4-dichlorophenoxyacetic acid (2, 4-D) (3.5 mg/l) alone or in combination with $N^6-benzyladenine$ (2 mg/l). Somatic embryogenesis was achieved from long term calli when cultured on MS medium containing 2, 4-dichlorophenoxyacetic acid (2, 4-D) (2 mg/l) along with $N^6-benzyladenine$ (BA) (1-2 mg/l). Regeneration was achieved when freshly induced embryogenic calli were sub-cultured on MS medium supplemented with $N^6-benzyladenine$ (3 mg/l) alone. Long-term cultured embryos showed profuse minute rooting on regeneration medium supplemented with N6 -benzyladenine (3 mg/l). Microshoots were rooted in the presence of indole-butyric acid (IBA) (2 mg/l). DNA samples from the mother plant and 18 randomly selected regenerated plants from a single callus were subjected to RAPD analysis with 6 arbitrary decamer primers for the selection of putative somaclones. A total of 64 band positions were scored, out of which 19 RAPD bands were polymorphic. From genetic similarity coefficient based on RAPD band data sharing, it was found that the majority of the clones were almost identical or more than 92% similar to the mother plant, except CL2 and CL9 (66%) which showed highest degree of genetic change with CL2 and CL9 showing presence of two non-parental bands each.

Characterization of In vitro Propagated Plants Via Somatic Embryo Formation from Old Wild Panax ginseng

  • Bae, Kee Hwa;Choi, Yong Eui
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.405-411
    • /
    • 2014
  • Wild Korean ginseng has been recognized as highly precious medicine since ancient times. Nowadays, the population of wild ginseng in the forest of Korean peninsula is very rare due to indiscreet harvest. In this work, we investigated the plant regeneration via somatic embryogenesis from embryogenic callus of old wild ginseng (more than 50 years-old) and compared the features of plants regenerated from 5-years old and 50 years-old ginseng. Induction of embryogenic callus from adventitious roots of 50 year-old wild ginseng required 83 weeks of culture, but only 10 weeks were sufficient for 5 year-old ginseng. Height and width of plants derived from the old wild ginseng was smaller and slender compared to the plantlets derived from 5 year-old ginseng. Total chlorophyll contents was 2-6 time lower in plantlets regenerated from 50 year-old wild ginseng than those from 5 year-old ginseng, but anthocyanin content was higher in 50 year-old ginseng. Our results revealed that plants regenerated from old wild ginseng have different morphological and physiological characters probably due to age-dependent phenomenon.

Isolation and Culture of Protoplasts Derived from Embryogenic Cell Suspension Culture of Oryza sativa (Rice) (벼 진탕 배 배양세포로부터 원형질체 분리 및 배양)

  • Hwang, Baik;Kim, Mee-Kyung;Vasil, I. K.
    • Journal of Plant Biology
    • /
    • v.31 no.1
    • /
    • pp.41-49
    • /
    • 1988
  • Several cultivars of rice were examined for induction of embryogenic callus on a medium containing MS salts, vitamins and 2, 4-D under darkness. Embryogenic callus was obtained from cultivar Cheonma with high ratio and embryo-like structures were formed from the callus on a medium with or without reduced 2, 4-D. Somatic embryoids with a plumule and radicle axis surrounded by a scutellum were observed. These embryoids germinated and produced plantlets in 30 days on the same medium. Protoplasts isolated from an embryogenic cell suspension culture derived from embryogenic callus were cultured either in liquid or in agar medium and protoplast derived cell colonies were obtained in 3-4 weeks.

  • PDF