• Title/Summary/Keyword: embrittlement

Search Result 318, Processing Time 0.036 seconds

Thermal Aging Embrittlement in LWR Primary Pressure Boundary Components

  • Kim, Sunki;Kim, Yongsoo;Wonmok Jae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.635-640
    • /
    • 1995
  • Two techniques for the verification of the phase separation in ferrite phase of primary pressure bounary component materials, the primary cause of thermal aging embrittlement, are presented. Data base of room-temperature Charpy V-notch impact energy during reactor service was estimated as a measure of the degree of embrittlement. The serviceable period of CF-3 and CF-8 alloys as the primary pressure boundary components may be acceptably extended for 60 years of lifetime. However, the integrity of CF-8M alloys can be degraded seriously after several years of service in the nuclear reactor.

  • PDF

Evaluation of Material Properties Considering Thermal Embrittlement for Accelerated aged CF-8M and CF-8A Cast Austenitic Stainless Steel (가속열화된 CF-8M 및 CF-8A 주조 스테인리스강의 열취화 재료물성치 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.118-123
    • /
    • 2004
  • Cast austenitic stainless steel have been widely used for primary coolant piping in light water reactors. This material is subject to thermal embrittlement at reactor operating temperature. CF-8M and CF-8A cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. Thermal embrittlement results in spinodal decomposition of delta-ferrite leading to decreased fracture toughness. In this study, the specimens were prepared using an accelerated aging method. The measurement of ferrite content, Charpy impact test and J-R test were performed to verify the predicting equation for aged material properties. In case of above 25% ferrite content, predicted result of J-R curve might be non-conservative.

  • PDF

Hydrogen Embrittlement of Zr-2.5Nb PT with Temperature (Zr-2.5Nb 압력관의 온도변화에 따른 수소취화 파괴거동)

  • Oh, Dong-Joon;Ahn, Sang-Bok;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.78-83
    • /
    • 2003
  • The aim of this study is to investigate the effect of hydrogen embrittlement od Zr-2.5Nb CANDU pressure tube. The test were performed at three hydrogen contents for transverse tensile and CCT specimens while the test temperatures were changed (RT to 300$^{\circ}C$). The specimens were directly machined from the tube retaining original curvature using electric discharge machine. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over 250$^{\circ}C$. From the fracture toughness test, it was found that fracture toughness dJ/da was increased up to 200$^{\circ}C$ and then decreased.

  • PDF

The Case Study of High Strength Bolt Cadmium Embrittlement Failure (고강도 볼트 카드늄 취성파괴 사례연구)

  • Yoon, Young-In;Park, Chan-Wook;Sohn, Kyung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.244-249
    • /
    • 2008
  • It happened a failure on special bolt which supported main landing gear actuator up-lock rod of 00 aircraft. Fracture was occurred at end of center drilled hole and thread machined on bolt. Metallographic, fractographic, and other characteristics of embrittlement analysis and experiments carried out on the failed bolt to find out the reason. Bolt surface was cadmium electroplated(EP) to give lubrication and provide excellent corrosion resistance. Resultly, Bolt was failed due to cadmium embrittlement occurred during baking treatment as well as center drilled hole. for the failure that are relevant to failure analysis and prevention. For their successful functional application, cadmium EP bolts require proper and adequate baking treatment after electroplating, and is complete with no center drilled hole

  • PDF

Hydride Embrittlement Behavior at the LBB Evaluation of PHWR Pressure Tube (중수로 압력관 LBB 평가에서의 수소화물에 의한 취화거동)

  • Oh, Dong-Joon;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1192-1197
    • /
    • 2003
  • The aim of this study is to investigate the hydride embrittlement when the LBB evaluation is carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to $300^{\circ}C$). The specimens were directly machined from the pressure tube retaining original curvature. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over $250^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement behavior at the LBB evaluation was definitely showed.

  • PDF

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

Comparison of hydrogen embrittlement resistance between 2205 duplex stainless steels and type 316L austenitic stainless steels under the cathodic applied potential (음극 인가전위 하에서 type 2205과 type 316L의 수소취성 저항성)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.237-244
    • /
    • 2016
  • 2205 duplex stainless steels have been used for the construction of the marine environment, because of their excellent corrosion resistance and high strength. However, the resistance to hydrogen embrittlement (HE) may be less than that of 316L austenitic stainless steel. The reason why 316L stainless steels have better resistance to HE is associated with crystal structure (FCC, face centered cubic) and the higher stacking faults energy than 2205 duplex stainless steels. Furthermore 2205 stainless steels with or without tungsten were also examined in terms of HE. 2205 stainless steels containing tungsten is less resistible to HE. It is because dislocation tangle was formed in 2205 duplex stainless steels. Slow strain-rate tensile test (SSRT) was conducted to measure the resistance to HE under the cathodic applied potential. Hydrogen embrittlement index (HEI) was used to evaluate HE resistance through the quantitative calculation.

A study of predicting irradiation-induced transition temperature shift for RPV steels with XGBoost modeling

  • Xu, Chaoliang;Liu, Xiangbing;Wang, Hongke;Li, Yuanfei;Jia, Wenqing;Qian, Wangjie;Quan, Qiwei;Zhang, Huajian;Xue, Fei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2610-2615
    • /
    • 2021
  • The prediction of irradiation-induced transition temperature shift for RPV steels is an important method for long term operation of nuclear power plant. Based on the irradiation embrittlement data, an irradiation-induced transition temperature shift prediction model is developed with machine learning method XGBoost. Then the residual, standard deviation and predicted value vs. measured value analysis are conducted to analyze the accuracy of this model. At last, Cu content threshold and saturation values analysis, temperature dependence, Ni/Cu dependence and flux effect are given to verify the reliability. Those results show that the prediction model developed with XGBoost has high accuracy for predicting the irradiation embrittlement trend of RPV steel. The prediction results are consistent with the current understanding of RPV embrittlement mechanism.

Analysis of Influence Factors on Hydrogen Embrittlement of Pipe Steel according to Hydrogen Pipeline Operating Conditions (수소배관 운영 조건에 따른 배관강이 수소취성에 미치는 영향 인자 분석)

  • JONGHYUN BAEK;YUNCHAN JANG;CHEOLMAN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.216-229
    • /
    • 2024
  • Pipeline steels for hydrogen transmission may cause hydrogen embrittlement due to absorption and diffusion of hydrogen through metals. Hydrogen pipes exhibited similar mechanical properties to atmospheric conditions in terms of tensile and yield strength in a hydrogen atmosphere. This paper aims to provide relevant information regarding hydrogen embrittlement in hydrogen transmission pipeline.

The Study on the Electrochemical Polarization Characteristics of Hydrogen Embrittlement for Ferrite Stainless Steel with Welding Conditions (용접조건에 따른 페라이트 스테인리스강에 대한 수소취성의 전기화학적 분극특성에 관한 연구)

  • Choi, Byung-Il;Lim, Uh-Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.30-35
    • /
    • 2005
  • In order to examine the electrochemical polarization characteristics of hydrogen embrittlement far STS444 with welding conditions, this paper carried out the accelerated hydrogen osmosis test and the electrochemical polarization test. That is, in $0.5M\; H_2SO_4+0.001M\;As_2O_3$ solution, the hydrogen embrittlement behavior of STS444 added to load of $1,400kg/cm^2$ together with hydrogen osmosis by current of $30mA/cm^2$ far 60 min. was considered. In researching the electrochemical polarization characteristics of hydrogen embrittlement for STS444 with welding conditions, the previous study clarified that tensile strength or elongation became low influenced by absorption of oil or water before welding. In this paper, we proposed the advanced mechanism of hydrogen embrittlement that integrated electrochemical corrosion with the existing mechanism of hydrogen embrirtlement.

  • PDF