• Title/Summary/Keyword: embedded processor

Search Result 548, Processing Time 0.024 seconds

Parallel SystemC Cosimulation using Virtual Synchronization (가상 동기화 기법을 이용한 SystemC 통합시뮬레이션의 병렬 수행)

  • Yi, Young-Min;Kwon, Seong-Nam;Ha, Soon-Hoi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.12
    • /
    • pp.867-879
    • /
    • 2006
  • This paper concerns fast and time accurate HW/SW cosimulation for MPSoC(Multi-Processor System-on-chip) architecture where multiple software and/or hardware components exist. It is becoming more and more common to use MPSoC architecture to design complex embedded systems. In cosimulation of such architecture, as the number of the component simulators participating in the cosimulation increases, the time synchronization overhead among simulators increases, thereby resulting in low overall cosimulation performance. Although SystemC cosimulation frameworks show high cosimulation performance, it is in inverse proportion to the number of simulators. In this paper, we extend the novel technique, called virtual synchronization, which boosts cosimulation speed by reducing time synchronization overhead: (1) SystemC simulation is supported seamlessly in the virtual synchronization framework without requiring the modification on SystemC kernel (2) Parallel execution of component simulators with virtual synchronization is supported. We compared the performance and accuracy of the proposed parallel SystemC cosimulation framework with MaxSim, a well-known commercial SystemC cosimulation framework, and the proposed one showed 11 times faster performance for H.263 decoder example, while the accuracy was maintained below 5%.

Efficient RMESH Algorithms for Computing the Intersection and the Union of Two Visibility Polygons (두 가시성 다각형의 교집합과 합집합을 구하는 효율적인 RMESH 알고리즘)

  • Kim, Soo-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.401-407
    • /
    • 2016
  • We can consider the following problems for two given points p and q in a simple polygon P. (1) Compute the set of points of P which are visible from both p and q. (2) Compute the set of points of P which are visible from either p or q. They are corresponding to the problems which are to compute the intersection and the union of two visibility polygons. In this paper, we consider algorithms for solving these problems on a reconfigurable mesh(in short, RMESH). The algorithm in [1] can compute the intersection of two general polygons in constant time on an RMESH with size O($n^3$), where n is the total number of vertices of two polygons. In this paper, we construct the planar subdivision graph in constant time on an RMESH with size O($n^2$) using the properties of the visibility polygon for preprocessing. Then we present O($log^2n$) time algorithms for computing the union as well as the intersection of two visibility polygons, which improve the processor-time product from O($n^3$) to O($n^2log^2n$).

Performance improvement on mobile devices using MVC+Prefetch Controller Pattern (MVC+Prefetch Controller 패턴을 사용한 모바일 기기의 성능향상 기법)

  • Im, Byung-Jai;Lee, Eun-Seok
    • The KIPS Transactions:PartD
    • /
    • v.18D no.3
    • /
    • pp.179-184
    • /
    • 2011
  • Current mobile devices have surpassed its boundaries as a more communication tool to a smart device which provides additional features. These features have supported the smart life of its users, but have reached its limit from low-performance processors and short-battery time. These issues can be resolved b implementing higher performing hardware, but they come with a burden of high cost. This paper introduces a new way of managing computing resources in a mobile device by enhancing the quality of human-computer interaction. The real-speed felt by users are mainly influenced by the time it takes form a user's input to the device to display the completed result on the screen. Since the size of the screen for mobile devices are small, if the processor only fetch data to be used for displaying on screen, the time can be significantly reduced. MVC+Prefetch Controller pattern accomplished this goal by using the minimum amount of data from DB to fetch display and still manages to support high-speed data transfer to achieve seamless display. This idea has been realized by practice using Samsung mobile phone S8500, which demonstrated the superior performance on user's perspective.

Development of T-commerce Processing Payment Module Using IC Credit Card(EMV) (IC신용카드(EMV)를 이용한 T-커머스 결제처리 모듈 개발)

  • Choi, Byoung-Kyu;Lee, Dong-Bok;Kim, Byung-Kon;Heu, Shin
    • The KIPS Transactions:PartA
    • /
    • v.19A no.1
    • /
    • pp.51-60
    • /
    • 2012
  • IC(Integrated circuits)card, generally be named smard card, embedded MPU(Micro Processor Unit) of small-size, memory, EEPROM, Card Operating System(COS) and security algorithm. The IC card is used in almost all industry such as a finance(credit, bank, stock etc.), a traffic, a communication, a medical, a electronic passport, a membership management and etc. Recently, a application field of IC card is on the increase by method for payments of T-commerce, as T-commerce is becoming a new growth engine of the broadcating industry by trend of broadcasting and telecommunication convergence, smart mechanization of TV. For example, we can pay in IC credit card(or IC cash card) on T-Commerce. or we can be provided TV banking service in IC cash card such as ATM. However, so far, T-commerce payment services have weakness in security such as storage and disclosure of card information as well as dropping sharply about custom ease because of taking advantage of card information input method using remote control. To solve this problem, This paper developed processing payment module for implementing TV electronic payment system using IC credit card payment standard, EMV.

Low Power EccEDF Algorithm for Real-Time Operating Systems (실시간 운영체제를 위한 저전력 EccEDF 알고리듬)

  • Lee, Min-Seok;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • For battery based real-time embedded systems, high performance to meet their real-time constraints and energy efficiency to extend battery life are both essential. Real-Time Dynamic Voltage Scaling (RT-DVS) has been a key technique to satisfy both requirements. In this paper, we present an efficient RT-DVS algorithm called EccEDF that is designed based on ccEDF. The proposed algorithm can precisely calculate the maximum unused utilization with consideration of the elapsed time while keeping the structural simplicity of ccEDF, which overlooked the time needed to run the task in calculating the available slack. The maximum unused utilization can be calculated by dividing remaining execution time($C_i-cc_i$) by remaining time($P_i-E_i$) on completion of the task and it is proved using Fluid scheduling model. We also show that the algorithm outperforms ccEDF in practical applications which is modelled using a PXA250 and a 0.28V-to-1.2V wide-operating-range IA-32 processor model.

Reliability Analysis of The Mission-Critical Engagement Control Computer Using Active Sparing Redundancy (ASR 기법을 적용한 임무지향 교전통제 컴퓨터의 신뢰도 분석)

  • Shin, Jin-Beom;Kim, Sang-Ha
    • The KIPS Transactions:PartA
    • /
    • v.15A no.6
    • /
    • pp.309-316
    • /
    • 2008
  • The mission-critical engagement control computer for air defense has to maintain its operation without any fault for a long mission time. The mission performed by large-scale and complex embedded software is extremely critical in terms of dependability and safety of computer system, and it is very important that engagement control computer has high reliability. The engagement control computer was implemented using four processors. The distributed computer composed of four processors quarantees the dependability and safety, and ASR fault-tolerant technique applied to each processor guarantees the reliability. In this paper, the mechanism and performance of ASR fault-tolerant technique are analysed. And MTBF, reliability, availability, and cost-effectiveness for ASR, DMR and TMR techniques applied to the engagement control computer are analysed. The mission-critical engagement control computer using software-based ASR fault-tolerant technique provides high reliability and fast recovery time at a low cost. The mission reliability of the engagement control computer using ASR technique in 4 processors board is almost same the reliability of the computer using TMR technique in 6 processors board. ASR technique is most suitable to the mission-critical engagement control computer.

Implementation of a pipelined Scalar Multiplier using Extended Euclid Algorithm for Elliptic Curve Cryptography(ECC) (확장 유클리드 알고리즘을 이용한 파이프라인 구조의 타원곡선 암호용 스칼라 곱셈기 구현)

  • 김종만;김영필;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.17-30
    • /
    • 2001
  • In this paper, we implemented a scalar multiplier needed at an elliptic curve cryptosystem over standard basis in $GF(2^{163})$. The scalar multiplier consists of a radix-16 finite field serial multiplier and a finite field inverter with some control logics. The main contribution is to develop a new fast finite field inverter, which made it possible to avoid time consuming iterations of finite field multiplication. We used an algorithmic transformation technique to obtain a data-independent computational structure of the Extended Euclid GCD algorithm. The finite field multiplier and inverter shown in this paper have regular structure so that they can be easily extended to larger word size. Moreover they can achieve 100% throughput using the pipelining. Our new scalar multiplier is synthesized using Hyundai Electronics 0.6$\mu\textrm{m}$ CMOS library, and maximum operating frequency is estimated about 140MHz. The resulting data processing performance is 64Kbps, that is it takes 2.53ms to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption & decryption and key exchange in real time embedded-processor environments.

A Security SoC embedded with ECDSA Hardware Accelerator (ECDSA 하드웨어 가속기가 내장된 보안 SoC)

  • Jeong, Young-Su;Kim, Min-Ju;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1071-1077
    • /
    • 2022
  • A security SoC that can be used to implement elliptic curve cryptography (ECC) based public-key infrastructures was designed. The security SoC has an architecture in which a hardware accelerator for the elliptic curve digital signature algorithm (ECDSA) is interfaced with the Cortex-A53 CPU using the AXI4-Lite bus. The ECDSA hardware accelerator, which consists of a high-performance ECC processor, a SHA3 hash core, a true random number generator (TRNG), a modular multiplier, BRAM, and control FSM, was designed to perform the high-performance computation of ECDSA signature generation and signature verification with minimal CPU control. The security SoC was implemented in the Zynq UltraScale+ MPSoC device to perform hardware-software co-verification, and it was evaluated that the ECDSA signature generation or signature verification can be achieved about 1,000 times per second at a clock frequency of 150 MHz. The ECDSA hardware accelerator was implemented using hardware resources of 74,630 LUTs, 23,356 flip-flops, 32kb BRAM, and 36 DSP blocks.