• Title/Summary/Keyword: embedded copper

Search Result 62, Processing Time 0.041 seconds

A Study for Physical Properties and Corrosion for Metals after Softening of Wood (포화염수 삶음 처리가 목재의 물리적 특성 및 금속 부식에 미치는 영향)

  • Park, Jin Young;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.621-630
    • /
    • 2019
  • A woodblock softening process using saltwater was investigated in order to reduce the cracks and distortion caused by the woodblock-making process and to make the woodblock softer and sculpturing easier. Although anatomical studies of woodblocks have been ongoing for years, little work has been done on softening treatments using natural materials. Hence, the purpose of this paper is to investigate the change in the physical properties of wood treated with saturated brine and the effect of salt on metal nails found embedded in woodblocks. After boiling for twelve h each in water and saturated brine, the saltwater-boiled specimens have longer drying times than the water-boiled specimens. Further, it was observed that salt particles penetrated the cells in the wood. As a result of exposing the copper and iron nails, which were stuck in each specimen, to a high humidity environment, the weight of the saltwater-boiled specimens increased due to the hygroscopicity of the salt. Corrosion of the nails also occurred. This result is similar to the problem that appears on the edge of a woodblock. In conclusion, it was shown that salt in the wood cells affects the corrosion of metal embedded in the wood.

The Implemention of RTD-l000A based on ARM Microcontroller (ARM 마이크로컨트롤러 기반 RTD-1000A의 구현)

  • Kim, Min-Ho;Hong, In-Sik
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • With increase of concern about the Ubiquitous application, the necessity of the computer system which is miniaturized is becoming larger. The ARM processor is showing a high share from embedded system market. In this paper, ideal method for RTD-1000 controller construction and development is described using ARM microcontroller. Existing RTD-1000 measures distance of disconnection or defect of sensing casket by measuring receiving reflected wave which was sent via copper wire inside the leaking sensing rod. Using this RTD-1000, leakage and breakage of water and oil pipe can be sensed and it reports damage results to the networks. But, existing RTD-1000 wastes hardware resources much and costs a great deal to installation. Also, it needs a cooling device because the heating problem, and has some problem of the secondary memory unit such as the hard disk. So, long tenn maintenance has some problems in the outside install place. In this paper, for the resolving the problem of RTD-1000, RTD-1000A embedded system based on ARM is proposed and simulated.

  • PDF

Bio Toxicity Assessment and Kinetic Model of 6 Heavy Metals Using Luminous Bacteria (발광미생물을 이용한 중금속 6종의 생물독성 평가 및 모델링)

  • Kim, Ilho;Lee, Jaiyeop
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.547-555
    • /
    • 2018
  • In addition to North America and Europe, Korea is also responding to the toxic damage caused by the production and distribution of chemicals. Methods for assessing bio-toxicity of harmful substances have been widely introduced, but it is required of quantitative and speedy information for modeling. For 6 heavy metals, as zinc, copper, chrome, cadmium, mercury and lead, bio-toxicity assessment and kinetics model were constructed using Vibrio fischeri which is widely used luminous bacteria. The degree of luminescence activity and the toxicity of heavy metals were relative limunescence unit, RLU measured as by using a photomultiplier embedded device. The toxicity was assessed by the concentration levels giving under 20% lethality and lethal concentration, $EC_{50}$. In the results, the toxicity order were followed from mercury, lead, copper, chrome, zinc and cadmium. $EC_{{50},{\infty}}$ obtained by trends of $EC_{50}$ by time follows had highly linear agreement with main parameters of bio-toxicity modelling. The average error rates of the reproduced lethality obtained from DAM and TDM model on the basis of body residue, were 10.2% for mercury, lead, copper, chrome and 20.0 for the all 6 methals.

LTCC and LTCC-M Technologies for Multichip Module (Multichip module 개발을 위한 LTCC 밀 LTCC-M 기술)

  • 박성대;강현규;박윤휘;문제도
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.25-35
    • /
    • 1999
  • LTCC (Low Temperature Cofired Ceramic) or LTCC-M (Low Temperature Cofired ceramic on Metal) technology is one of MCM-C (Multichip Module on Ceramic) technologies and becomes to be widely used in consumer, RF and automotive electronics. As green sheets for LTCC are cofired below $1000^{\circ}C$ in comparison with those for HTCC (High Temperature Cofired Ceramic), high conductivity metal traces such as gold, silver and copper can be used. The dimensional stability in LTCC-M technology enables embedded passives to be integrated inside modules, which enhances the electrical performance and increases the reliability of the modules. Coefficient of thermal expansion and dielectric constant can be controlled by changing composition and heating profile for cofiring. In this technical review, LTCC and LTCC-M technologies are introduced and advantages of those technologies are explained.

  • PDF

An Experimental Investigation of the Boiling Heat Transfer on the Vertical Square Surface (수직면에서의 비등 열전달에 대한 실험적 연구)

  • Kim, Jae-Kwang;Song, Jin-Ho;Kim, Sin;Kim, Sang-Baik;Kim, Hee-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1237-1244
    • /
    • 2001
  • An experimental study was carried out to identify the various regimes of natural convective pool boiling and to determine the boiling heat transfer curve and Critical Heat Flux(CHF) on a vertical square surface having a 70mm width and a 70mm height. The heater made of copper block with embedded cartridge heaters is submerged in a water tank at atmospheric pressure. As the heat flux increases from 100kW/㎡ to 1.2MW/㎡, the heat transfer regime migrates from the nucleate boiling to the film boiling. The boiling heat transfer data are fitted by Rohsenow type correlation. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux, is visualized using a high speed digital imaging system.

Ultrafine Grained Cu-diamond Composites using High Pressure Torsion (고압비틀림 공정으로 제조된 구리-다이아몬드 초미세립 복합재료)

  • Yoon, Eun-Yoo;Lee, Dong-Jun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.204-209
    • /
    • 2012
  • In this work, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Pure Cu powders were mixed with 5 and 10 vol% diamonds and consolidated into disc-shaped samples at room temperature by HPT at 1.25 GPa and 1 turn, resulting in ultrafine grained metallic matrices embedded with diamonds. Neither heating nor additional sintering was required with the HPT process so that in situ consolidation was successfully achieved at ambient temperature. Significantly refined grain structures of Cu metallic matrices with increasing diamond volume fractions were observed by electron backscatter diffraction (EBSD), which enhanced the microhardness of the Cu-diamond composites.

A Numerical Study on the Heat Transfer Characteristics of a Metal Hydride Reactor with Embedded Heat Pipes (내부에 히트파이프를 삽입한 메탈 하이드라이드 반응기의 열전달 특성에 대한 수치해석 연구)

  • Park, Young-Hark;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2346-2351
    • /
    • 2008
  • This study deals with heat pipes inserted into the metal hydride(MH) reactor to increase the effective thermal conductivity of the system and thus to enhance the thermal control characteristics. A numerical analysis was conducted to predict the effect of inserted heat pipes on the heat transfer characteristics of MH, which inherently has extremely low thermal conductivity. The numerical model was a cylindrical container of O.D. 76.3 mm and length 1 m, which is partially filled with about 60% of MH material. The heat pipe was made of copper-water combination, which is suitable for operation temperature range between $10^{\circ}C$ and $80^{\circ}C$. Both inner -and outer- heat pipes were considered in the model. Less than two hours of transient time is of concern when decreasing or increasing the temperature for absorption and discharge of hydrogen gas. FLUENT, a commercial software, was employed to predict the transient as well as steady-state temperature distribution of the MH reactor system. The numerical results were compared and analyzed from the view point of temperature uniformity and transient time up to the specified maximum or minimum temperatures.

  • PDF

Analysis of Decoupling Capacitor for High Frequency Systems

  • Jung, Y.C.;Hong, K.K.;Kim, H.M.;Hong, S.K.;Kim, C.J.
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.437-438
    • /
    • 2007
  • In this paper a embedded decoupling capacitor design with gap structure will be discussed. A novel structure is modeling and analization by High Frequency Structure Simulator (HFSS). Proposed capacitor have $2m{\times}2m$ in rectangular shape. The film thickness of copper/dielectric film/substrate is respectively 35um/20um/35um. A dielectric layer of BaTiO3/epoxy has the relative permittivity of 25. Compare of the planar decoupling capacitor, capacitance densities of this structure in the range of $55{\mu}F$/mm2 have been obtained with 50um gap while capacitance densities of planar structure $55{\mu}F$/mm2 in the same size. The frequency dependent behavior of capacitors is numerically extracted over a wide frequency bandwidth 500MHz-7GHz. The decoupling capacitor can work at high frequency band increasing the gap size.

  • PDF

Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition (원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화)

  • Bae, Cha-Hurn;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF

Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment (MFC의 금속 및 탄소전극에 의한 전기생산 특성과 오염저감 효과)

  • Kwon, Sung-Hyun;Song, Hyung-Jin;Lee, Eun-Mi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.951-960
    • /
    • 2010
  • Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. $0.57\;W/m^2$ Al/Graphite. Meanwhile, graphite-only electrodes produced max. $0.11\;W/m^2$ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was $0.64\;W/m^2$. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5~36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.