DOI QR코드

DOI QR Code

발광미생물을 이용한 중금속 6종의 생물독성 평가 및 모델링

Bio Toxicity Assessment and Kinetic Model of 6 Heavy Metals Using Luminous Bacteria

  • 김일호 (한국건설기술연구원 환경플랜트연구소) ;
  • 이재엽 (한국건설기술연구원 환경플랜트연구소)
  • Kim, Ilho (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jaiyeop (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2018.11.26
  • 심사 : 2018.12.21
  • 발행 : 2018.12.31

초록

북미, 유럽 뿐 아니라 우리나라에서도 유해물질 관리제도가 도입되는 등 매년 크게 증가하는 화학물질의 생산, 유통으로 인한 독성 피해에 대응하고 있다. 유해물질의 생물독성을 평가하는 방법은 널리 소개되어 왔으나, 모델링을 위한 정량적이고 신속한 정보가 요구된다. 본 연구에서는 발광 미생물인 Vibrio fischeri를 이용하여 아연, 구리, 크롬, 카드뮴, 수은, 납 등 중금속 6종에 대한 독성 평가를 실시하고, 독성 모델링을 통해 생존율을 재현하였다. 발광 미생물의 활성 정도 및 중금속에 의한 독성은 photomultiplier가 내장된 감광 장치를 이용하여 상대발광도를 측정, 독성의 영향을 판단하였다. 30분 내 저해율이 20% 미만에 이르는 농도 및 $EC_{50}$ 등을 통해 독성을 평가하였다. 그 결과, 생물 독성은 수은, 납, 구리, 크롬, 아연, 카드뮴 순으로 나타났다. 시간별 $EC_{50}$의 추세선을 통해 얻은 $EC_{{50},{\infty}}$는 독성 모델링의 주요 파라미터와 선형 관계가 높았다. 실험결과로부터 DAM, TDM 모델링에 필요한 주요 파라미터를 얻었으며, 재현된 독성 영향은 아연, 구리, 크롬, 카드뮴 등에서 오차율 평균 10.2%이었다. Vibrio fischeri를 및 감광 장치를 이용한 미생물 독성 측정 방법은 짧은 시간에서 $EC_{{50},{\infty}}$ 및 독성 모델링 구현에 필요한 주요한 인자들을 신속하게 얻을 있어 유용하게 활용될 수 있을 것으로 기대된다.

In addition to North America and Europe, Korea is also responding to the toxic damage caused by the production and distribution of chemicals. Methods for assessing bio-toxicity of harmful substances have been widely introduced, but it is required of quantitative and speedy information for modeling. For 6 heavy metals, as zinc, copper, chrome, cadmium, mercury and lead, bio-toxicity assessment and kinetics model were constructed using Vibrio fischeri which is widely used luminous bacteria. The degree of luminescence activity and the toxicity of heavy metals were relative limunescence unit, RLU measured as by using a photomultiplier embedded device. The toxicity was assessed by the concentration levels giving under 20% lethality and lethal concentration, $EC_{50}$. In the results, the toxicity order were followed from mercury, lead, copper, chrome, zinc and cadmium. $EC_{{50},{\infty}}$ obtained by trends of $EC_{50}$ by time follows had highly linear agreement with main parameters of bio-toxicity modelling. The average error rates of the reproduced lethality obtained from DAM and TDM model on the basis of body residue, were 10.2% for mercury, lead, copper, chrome and 20.0 for the all 6 methals.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Civil Engineering and Building Technology

참고문헌

  1. Korea Ministry of Environment (MOE), "Chemical Materials Management System Safe and Beneficial for Public," Environmental Policy, 5 (2013).
  2. Korea Ministry of Environment (MOE), "Study on Introduction Plan of Integrated Toxicity Control System for Water Quality Toxic Substance(III)," (2005).
  3. National Institute of Environmental Research (Korea), "Experimental Methods and Operation Guides and for Bio-toxicity : Revised Ver.," 2015. 12.
  4. Korea Ministry of Environment (MOE), "Environmenal Policy Basic Law," (2017).
  5. ISO, ISO 11348-3, "Water quality-Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)-Part 3: Method using freeze-dried bacteria," (2007).
  6. Hastings, J. W. and Nealson, K. H., "Bacterial Bioluminescence," Ann. Rev. Microbiol., 31, 549-595 (1977). https://doi.org/10.1146/annurev.mi.31.100177.003001
  7. Lee, W. M., Kim, J. S., Kim, I. H., Kim, S. G., and Yoon, Y. H. "Toxic Interactions of Perfluorinated Compounds (PFCs) with Heavy Metals Using Vibrio fischeri," J. Kor. Soc. Environ. Eng., 36(2), 119-126 (2014). https://doi.org/10.4491/KSEE.2014.36.2.119
  8. Lee, J. H., "Toxicokinetic and Toxicodynamic Models for Ecological Risk Assessment," J. Environ. Toxicol. 24(2), 79-93 (2009).
  9. Ashauer, R. and Brown, C. D., "Toxicodynamic Assumptions in Ecotoxicological Hazard Models," Environmental Toxicology and Chemistry, 27(8), 1817-1821 (2008). https://doi.org/10.1897/07-642.1
  10. Ashauer, R., Boxall A. B. A., and Brown, C. D., "Modeling Combined Effects of Pulsed Exposure to Carbaryl and Chlorpyrifos on Gammarus Pulex," Environ. Sci. & Technol., 41(15), 5535-5541 (2007). https://doi.org/10.1021/es070283w
  11. De Keyser, W., Gevaert, V., Verdonck, F., Nopens, I., De Baets, B., Vanrolleghem, P. A., Mikkelsen, P. S., and Benedetti, L., "Combining multimedia models with integrated urban water system models for micropollutants," Water Science & Technology, 62(7), 1614-1622 (2010). https://doi.org/10.2166/wst.2010.475
  12. EPA, "Benchmark Dose Model Executables," http://www.epa.gov/ncea/bmds (2015).
  13. Lee, J. Y., Lee, H. D., and Kim, I. H, "Bio-Toxicity Assessment of PFOA and PFOS to Vibrio Fischeri by Photomultiplier Tube," International Journal of Multimedia and Ubiquitous Engineering, 10(10), 247-258 (2015).