• Title/Summary/Keyword: elongation properties

Search Result 1,494, Processing Time 0.024 seconds

An Extremely Low Temperature Properties of Wrought Aluminum Alloys (가공용 알루미늄 합금의 극저온 특성)

  • Jung, Chan-Hoi;Kim, Soon-Kook;Lee, Jun-Hee;Lee, Hae-Woo;Jang, Chang-Woo
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.192-197
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen on the behavior of aluminum alloys used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing immersion time in the liquid nitrogen, the elongation of AI 5083 alloy at cryogenic temperature decreased because of non-uniform fracture of precipitates on the grain boundary, and the serration also occurred because of discontinuous slip due to rapid decreasing of the specific heat. The mechanical properties of AI 6061 alloy at cryogenic temperature were characterized by uniformed yield strength, tensile strength and elongation regardless of the immersion time in the liquid nitrogen. These mechanical properties of aluminum alloys at cryogenic temperature were interpreted by the strength of grain boundary and the slip deformation behavior.

Effects of Alloying Element and Grain Refinement on the Tensile Properties of Mg-Alloy Casted with Sand Mold (사형 주조 마그네슘 합금의 인장 특성에 미치는 합금 원소와 결정립 미세화의 영향)

  • Han, Jae-Jun;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.212-217
    • /
    • 2011
  • The effects of alloying element and grain refinement on the tensile properties of magnesium alloy poured into sand mold were investigated. The strength of magnesium alloy was greatly increased by the addition of aluminium and that was increased with the increased aluminum content added up to 8.10 wt% and decreased beyond that. Even though the strength of Mg-8.10 wt%Al alloy was rather decreased by the addition of zinc, that was increased with increased zinc content added up to 0.50 wt% and decreased with the increased one beyond that. The maximum tensile strength was obtained with 0.50 wt%Mn added. The strength and elongation were simultaneously increased with grain refinement and the optimum amount of strontium addition for this was 0.30 wt%. The optimum chemical composition was obtained and the yield strength, tensile strength and elongation of the alloy with this composition were 90.2, 176.3MPa and 4.43%, respectively.

The Physical Properties of Super Bulky Yarn According to Textured Condition (Super Bulky Yarn의 사가공 조건에 따른 물성변화)

  • Park, Myung-Soo
    • Fashion & Textile Research Journal
    • /
    • v.12 no.4
    • /
    • pp.500-507
    • /
    • 2010
  • In this study, physical properties were studied by using latent stretching yarn in order to develop the texturing yarn technique for super bulky yarn, which is better in bulkiness and handle than natural wool and also adds property of synthetic fiber to natural wool. In order to obtain textured conditions by analysing basic properties for manufacturing DTY yarn with super bulky property, DTY 50d/12 after spinning latent yarn spined POY 80d/12 was obtained under the two conditions of (i) false twist(T/M) level 3 in DTY texturing and (ii) draw ratio level 4 in draw texturing. For DTY texturing yarn, Elongation rate increased as the heat treatment time and temperatures increased. In addition, shrinkage became higher as false twist was higher, so that elongation rate became lower. When annealing became longer in time and higher in temperature, initial modulus increased. In addition, as the count of false twist increased, the initial modulus showed higher values. For draw texturing yarn, under the conditions of heat temperature 180 and heating time 30 minutes, shrinkage rate in draw ratio 1.55 and 1.6 draw ratio was 7%, and that in 1.65 and 1.7 draw ratio was 8.5%. High draw ratio samples' tenacity was much influenced by heating time and temperature, but low draw ratio samples' tenacity was influenced not by treated time, but by treated temperature.

Effects of Heat Treatment on the Micro-structures and the Mechanical Properties of 0.002% Boron-added Low Carbon Steel (0.002% 보론첨가 저탄소강의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Lim, Jong-Ho;Kim, Jong-Sik;Park, Byung-Ho;Lee, Jin-Hyeon;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.303-308
    • /
    • 2011
  • The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about $880-890^{\circ}C$ with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a $400-450^{\circ}C$ tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of $350-400^{\circ}C$. In the condition of quenching at $890^{\circ}C$ and tempering at $350^{\circ}C$, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill $350^{\circ}C$ and dropped sharply above $400^{\circ}C$ regardless of the quenching temperature.

Mechanical Properties of Silica Nanoparticle Reinforced poly(ethylene 2, 6-naphthalate)

  • Kim, Seong-Hun;Ahn, Seon-Hoon;Kim, Byoung-Chul;Shim, Kwang-Bo;Cho, Bong-Gyoo
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.293-302
    • /
    • 2004
  • We added surface-modified silica nanoparticles to poly(ethylene 2,6-naphthalate) (PEN) to investigate their effect on the mechanical properties on the PEN nanocomposite material. The torque and total torque values of the composites decreased in the silica nanoparticle composites. The tensile modulus of the composites reinforced with unmodified silica nanoparticles increased upon increasing the silica content, while the tensile strength and elongation decreased accordingly. In contrast, stearic acid-modified, silica nanoparticle reinforced PEN composites exhibited an increase in elongation and a decrease in tensile modulus upon addition of the silica nanoparticles because the stearic acid that had adsorbed onto the surface of the silica nanoparticle in multilayers could act as a plasticizer during melt compounding. Stearic acid modification had a small effect on the crystallization behavior of the composites. We calculated theoretical values of the tensile modulus using the Einstein, Kerner, and Nielsen equations and compared these values with the experimental data obtained from the composites. The parameters calculated using the Nielsen equation and the Nicolais- Narkis model revealed that the interfacial adhesion between silica nanoparticles and the PEN matrix could be improved.

Mechanical Properties of Rice Noodles When Adding Cellulose Ethers (셀룰로오스 에테르를 첨가한 쌀면의 기계적 물성)

  • Um, In Chul;Yoo, Young Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.3
    • /
    • pp.177-181
    • /
    • 2013
  • This study examined the effect of the molecular weight, substitution degree, and substitution type of cellulose ether on the mechanical properties of dried rice noodles. When increasing the molecular weight of the hydroxypropyl methylcellulose (HPMC), the bending strength of the dried rice noodles also increased. However, the bending strength of the rice noodles with added HPMCs was still lower than that of the wheat noodles. Meanwhile, the bending elongation of the dried rice noodles was higher than that of the wheat noodles and was increased when decreasing the molecular weight of the HPMC. In conclusion, the bending strength and elongation of dried rice noodles is affected by the substitution degree and type of cellulose ether.

  • PDF

Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels

  • Lee, Sang-In;Lee, Seung-Yong;Lee, Seok Gyu;Jung, Hwan Gyo;Hwang, Byoungchul
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1221-1231
    • /
    • 2018
  • The effect of strain aging on tensile behavior and properties of API X60, X70, and X80 pipeline steels was investigated in this study. The API X60, X70, and X80 pipeline steels were fabricated by varying alloying elements and thermomechanical processing conditions. Although all the steels exhibited complex microstructure consisting of polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, they had different fractions of microstructures depending on the alloying elements and thermomechanical processing conditions. The tensile test results revealed that yielding behavior steadily changed from continuous-type to discontinuous-type as aging temperature increases after 1% pre-strain. After pre-strain and thermal aging treatment in all the steels, the yield and tensile strengths, and yield ratio were increased, while the uniform elongation and work hardening exponent were decreased. In the case of the X80 steel, particularly, the decrease in uniform elongation was relatively small due to many mobile dislocations in PF, and the increase in yield ratio was the lowest because a large amount of harder microstructures such as GB, BF, and coarse secondary phases effectively enhanced work hardening.

Effect of Zn additions on the Mechanical Properties of High Strength Al-Si-Mg-Cu alloys (Zn 첨가량에 따른 Al-Si-Mg-Cu계 합금의 미세조직 및 기계적 특성변화)

  • Hwang, Soo-Been;Kim, Byung-Joo;Jung, Sung-Su;Kim, Dong-Gyu;Lee, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.39 no.3
    • /
    • pp.33-43
    • /
    • 2019
  • In this study, the effects of Zn additions on the mechanical properties of Al-Si-Mg-Cu alloys were investigated by increasing the amount of Zn up to 8wt.%. As the Zn content was increased up to 6 wt.%, the yield strength and elongation changed linearly without any significant changes in the size and shape of the main reinforcement phase. However, it was confirmed by SEM observation that the Mg-Zn phase formed between the reinforcement phases when the amount of Zn added exceeded 7wt.%. A Mg-Zn intermetallic compound formed between the $Mg_2Si$ phase, becoming a crack initiation point under stress. Thus, the formation of the Mg-Zn phase may cause a sharp decrease in the elongation when Zn at levels exceeding 7 wt.%. It was also found that the matrix became more brittle with increasing the Zn content. From these results, it can be concluded that the formation of the Mg-Zn intermetallic compound and the brittle characteristics of the matrix are the main causes of the remarkable changes in the mechanical properties of this alloy system

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.

Study on Physical Properties of Waterborne Polyurethane and Carbon Nanofiber Composites (수분산 폴리우레탄 및 탄소나노섬유 복합체의 물리적 특성)

  • Lim, Suk-Dae;Ko, Sang-Choel;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.24-29
    • /
    • 2021
  • In this study, the electrical and mechanical properties of carbon polymer composites, which have been gradually increasing in use in various fields, were investigated, and environment-friendly carbon nanofiber/waterborne polyurethane composites were prepared. Carbon nanofibers (diameter = approximately 100-300 mm) were synthesized using a relatively simple CVD process, obtaining a carbon material for application in ultrathin planar heating films and EMP shielding films in the future. The carbon nanofiber was dispersed, and mixed with water-dispersible polyurethane using a dispersing aid. According to the carbon nanofiber mass ratio, 20%-60% polyurethane/carbon nanofiber composites were manufactured. At a concentration of approximately 20%, the percolation threshold was determined, and at a concentration of approximately 50%, an electrical conductivity greater than 0.1 S/cm was determined. Moreover, a sample having a concentration of up to 60% was evaluated to further understand the mechanical properties. It was observed that as the concentration of the carbon nanofibers increased, the elongation decreased.