• Title/Summary/Keyword: elitism

Search Result 47, Processing Time 0.021 seconds

Impact of Ideological Orientation on Populist Attitude in Korea (한국 대중의 이념 정향이 포퓰리즘 성향에 미치는 영향)

  • Do, Myo Yuen
    • Korean Journal of Legislative Studies
    • /
    • v.27 no.1
    • /
    • pp.117-155
    • /
    • 2021
  • The purpose of this study is to identify the relationship between people's ideological orientation and the populist attitude in terms of demand of populism. The influence of subjective ideology evaluation and political party support on anti-elitism (AE), people centrism (PC) and anti-pluralism (AP) are analyzed in detail. To research this, the socioeconomic factors, democracy recognition and the method of political participation are set as control variables, and the ideologies are classified into extreme conservative, conservative, moderate, progress, and extreme progress. The data are collected through nationwide online survey. The results of the analysis are as follows: First, the powerful affinity between ideological orientation and populist attitude are confirmed. The support for conservative ideology (especially extreme conservative) and the conservative party are affecting the AE and AP, and the ideology of extreme progress and support for the progressive party are influencing the PC and AP. When putting together 3 types of attitude, the conservative (especially extreme conservative) and extreme progressive ideology are the factors that determine the populism attitude. Second, There was no impact of socioeconomic variables except gender (female) and age. Third, populist attitude have a multidimensional nature determined by democratic satisfaction, government trust, external efficacy, voting and non-voting activities.

An Attribute Replicating Vertical File Partition Method by Genetic Algorithm (유전알고리듬을 이용한 속성의 중복 허용 파일 수직분할 방법)

  • 김재련;유종찬
    • The Journal of Information Technology and Database
    • /
    • v.6 no.2
    • /
    • pp.71-86
    • /
    • 1999
  • The performance of relational database is measured by the number of disk accesses necessary to transfer data from disk to main memory. The paper proposes to vertically partition relations into fragments and to allow attribute replication to reduce the number of disk accesses. To reduce the computational time, heuristic search method using genetic algorithm is used. Genetic algorithm used employs a rank-based-sharing fitness function and elitism. Desirable parameters of genetic algorithm are obtained through experiments and used to find the solutions. Solutions of attribute replication and attribute non-replication problems are compared. Optimal solutions obtained by branch and bound method and by heuristic solutions(genetic algorithm) are also discussed. The solution method proposed is able to solve large-sized problems within acceptable time limit and shows solutions near the optimal value.

  • PDF

A Genetic Algorithm for the Traveling Salesman Problem Using Prufer Number (Prufer 수를 이용한 외판원문제의 유전해법)

  • 이재승;신해웅;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.41
    • /
    • pp.1-14
    • /
    • 1997
  • This study proposes a genetic algorithm using Pr(equation omitted)fer number for the traveling salesman problem(PNGATSP). Nearest neighbor nodes are mixed with randomly selected nodes at the stage of generating initial solutions. Proposed PNGATSP adopts a few ideas which are different from traditional genetic algorithms. For instance, an exponential fitness function and elitism are used and Pr(equation omitted)fer number is used for encoding TSP. Genetic operators are selected by experiments, which make a good solution among four combinations of conventional genetic operators and new genetic operators. For respective combinations, robust set of parameters is determined by the experimental designing approach. The feature of Pr(equation omitted)fer number code for TSP and the search power of GA using Pr(equation omitted)fer number is analysed. The best is a combination of OX(order crossover) and swap, which is superior to the other experimented combinations of genetic operators by 1.0%∼12.8% deviation.

  • PDF

Optimum Design of Two-Dimensional Steel Structures Using Genetic Algorithms (유전자 알고리즘을 이용한 2차원 강구조물의 최적설계)

  • Kim, Bong-Ik;Kwon, Jung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.75-80
    • /
    • 2007
  • The design variables for structural systems, in most practical designs, are chosen from a list of discrete values, which are commercially available sizing. This paper presents the application of Genetic Algorithms for determining the optimum design for two-dimensional structures with discrete and pseudocontinuous design variables. Genetic Algorithms are heuristic search algorithms and are effective tools for finding global solutions for discrete optimization. In this paper, Genetic Algorithms are used as the method of Elitism and penalty parameters, in order to improve fitness in the reproduction process. Examples in this paper include: 10 bar planar truss and 1 bay 8-story frame. Truss with discrete and pseudoucontinuous design variables and steel frame with W-sections are used for the design of discrete optimization.

Optimum Design of Trusses Using Genetic Algorithms (유전자 알고리즘을 이용한 트러스의 최적설계)

  • 김봉익;권중현
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.53-57
    • /
    • 2003
  • Optimum design of most structural system requires that design variables are regarded as discrete quantities. This paper presents the use of Genetic Algorithm for determining the optimum design for truss with discrete variables. Genetic Algorithm are know as heuristic search algorithms, and are effective global search methods for discrete optimization. In this paper, Elitism and the method of conferring penalty parameters in the design variables, in order to achieve improved fitness in the reproduction process, is used in the Genetic Algorithm. A 10-Bar plane truss and a 25-Bar space truss are used for discrete optimization. These structures are designed for stress and displacement constraints, but buckling is not considered. In particular, we obtain continuous solution using Genetic Algorithms for a 10-bar truss, compared with other results. The effectiveness of Genetic Algorithms for global optimization is demonstrated through two truss examples.

Optimum Design of Reinforced Concrete Beam Using Genetic Algorithms (유전자 알고리즘을 이용한 철근콘크리트 보의 단면 최적설계)

  • Kim, Bong-Ik;Kwon, Jung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.131-135
    • /
    • 2009
  • We present an optimum design method for a rectangular reinforced concrete beam using Genetic Algorithms. The optimum design procedure in this paper employs 2 design cases: i) all of the design variables (b, d, As) of the rectangular reinforced concrete section are used pseudo-continuously, ii) one is pseudo-continuous for the concrete cross section (b, d) and the other is discrete, using an index for the steel area (As). The optimum design in this paper uses Chakrabarty's model. In this paper, the Genetic Algorithms use the method of Elitism and penalty parameters to improve the fitness in the reproduction process, which leads to very practical designs. The optimum design of the steel area in the examples uses ASTM standard reinforcing bars (#3~#11, #14, #18).

Observer-Teacher-Learner-Based Optimization: An enhanced meta-heuristic for structural sizing design

  • Shahrouzi, Mohsen;Aghabaglou, Mahdi;Rafiee, Fataneh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.537-550
    • /
    • 2017
  • Structural sizing is a rewarding task due to its non-convex constrained nature in the design space. In order to provide both global exploration and proper search refinement, a hybrid method is developed here based on outstanding features of Evolutionary Computing and Teaching-Learning-Based Optimization. The new method introduces an observer phase for memory exploitation in addition to vector-sum movements in the original teacher and learner phases. Proper integer coding is suited and applied for structural size optimization together with a fly-to-boundary technique and an elitism strategy. Performance of the proposed method is further evaluated treating a number of truss examples compared with teaching-learning-based optimization. The results show enhanced capability of the method in efficient and stable convergence toward the optimum and effective capturing of high quality solutions in discrete structural sizing problems.

Optimization of Frame Structures with Natural Frequency Constraints (고유진동수 제약조건을 고려한 프레임 구조물의 최적화)

  • Kim, Bong-Ik;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.109-113
    • /
    • 2010
  • We present the minimum weight optimum design of cross sectional for frame structures subject to natural frequency. The optimum design in this paper employ discrete and continuous design variables and Genetic Algorithms. In this paper, Genetic Algorithms is used in optimization process, and be used the method of Elitism and penalty parameters in order to improved fitness in the reproduction process. For 1-Bay 2-Story frame structure, in examples, continuous and discrete design variables are used, and W-section (No.1~No.64), from AISC, discrete data are used in discrete optimization. In this case, Exhaustive search are used for finding global optimum. Continuous variables are used for 1-Bay 7-Story frame structure. Two typical frame structure optimization examples are employed to demonstrate the availability of Genetic Algorithms for solving minimum weight optimum of frame structures with fundamental and multi frequency.

Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm (유전 알고리즘을 이용한 전력시스템 안정화 장치의 최적 파라미터 선정)

  • Chung, Hyeng-Hwan;Wang, Yong-Peel;Chung, Dong-Il;Chung, Mun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.683-691
    • /
    • 1999
  • In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer(PSS) with robustness in low frequency oscillation for power system using Real Variable Elitism Genetc Algorithm(RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristic of PSS, the system eigenvalues criterion and the dynamic characteristic were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory.

  • PDF

New Mathematical Formulations and an Efficient Genetic Algorithm for Finding a Stable Set in a Competitive Location Problem (경쟁적 입지선정 문제의 안정집합을 찾기 위한 수리적 모형과 유전 알고리즘)

  • Choi, In-Chan;Kim, Seong-In;Hwang, Dae-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.223-234
    • /
    • 1997
  • Companies often have to locate their facilities considering competitors' response to their locational decision. One model available in the literature is due to Dobson and Karmarkar, in which a firm has to decide locations so as to prevent competitors from entering the market after the firm's entry. In this paper, we provide new compact binary integer program formulations for their competitive location model and also present an efficient Genetic Algorithm(GA) for finding a (near-)optimal stable set. The GA we propose utilizes a penalty function to handle the feasibility of the problem and modified elitism for better performance of the algorithm. Computational comparisons indicate the superior performance of the GA over the Dobson and Karmarkar's branch and fathom algorithm.

  • PDF