• Title/Summary/Keyword: elevation correction

Search Result 115, Processing Time 0.025 seconds

Monopulse Beamforming Network for Target Angle Tracking (표적 입사각 추적을 위한 모노펄스 빔형성 네트워크)

  • Moon Sung-Hoon;Han Dong-Seog;Cho Myeong-Je
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.53-64
    • /
    • 2004
  • This paper proposes a monopulse beamforming network to estimate a target angle in interference conditions. The proposed system estimates the target direction of arrival (DOA) with two separate beamformings for azimuth and elevation with a planar may. The elevation is extracted from adaptive beamforming in the azimuth direction and the azimuth from adaptive beamforming in the elevation direction. Unlike conventional monopulse beamforming techniques using complex correction formulas or a cascaded architecture of an adaptive array and a mainlobe canceller, the proposed system is very efficient from the computational complexity. The advantage is from fact that the monopulse ratio of the proposed system does not depend on the adapted weights. Moreover, the proposed system can estimate the DOA of the target even for multiple mainlobe interferences since it does not need my kinds of mainlobe maintenance technique.

Numerical Simulation for Behavior of Tidal Elevation and Tidal Currents in the South Sea (남해안의 조위 및 조류거동 수치모의)

  • Kwon, Seok-Jae;Kang, Tae-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.253-265
    • /
    • 2007
  • This study applied the previous results of the NAO model, a tidal correction model, to the open boundary condition for the behavior of tidal elevation and tidal currents in the South Sea. This study used the EFDC model considering the wetting and drying problem and using the $\sigma-coordinate$ as a vertical coordinate and generated two mesh cases of the constant grid size of 2.0 km and the variable grid size of $0.5\sim2.0km$. The numerical results for the tides showed that the predicted results were in quite good agreements with the observational data acquired from the tidal stations of the NORI. The predicted tides were observed to propagate from the east area to the west area in the South Sea. The verification results reveal that the numerical results are more correlated with the measured tidal data as the grid size decreases. The grid size of 2 km results in proper simulation of tidal currents in wide waterway and offshore area whereas the numerical results from the grid size of 0.5 km tend to somewhat underestimate the tidal currents affected by narrow waterway and topography in inner-bay.

Analysis of the Optimal Degree and Order of Spherical Harmonics for the GNSS Receiver Antenna's PCV Correction (GNSS 수신기 안테나의 PCV 보정 모델 산출을 위한 구면조화함수 최적차수 분석)

  • Kim, Jin Yi;Won, Ji Hye;Park, Kwan Dong;Seo, Seung Woo;Park, Heung Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • The positioning accuracy of GNSS surveys deteriorates due to various error factor, and many users sometimes ignore Phase Center Variation (PCV) of antennas. IGS provides an ANTEX file which contains PCV correction information to correct for PCVs. But it is not directly applicable because PCV correction information is provided at 5-degree intervals in the azimuth and elevation directions for the case of receiver antennas, and at 1-degree intervals in the nadir angle for the case of satellite antennas. So, we devised new and optimal ways of interpolating PCV in any desired line of sight to the GNSS satellite. We used spherical harmonics fitting methods in terms of the azimuth and elevation angle for interpolation, and found an optimal degree and order. It is shown that the best accuracy was obtained from the 8 by 8 spherical harmonics. If one requires lower burden on computing resources, the order and degree less than 8 could produce resonable accuracy except for 1st and 5th order.

Development of Environment-friendly Board in Construction Materials (친환경 건설 성형판재 개발을 위한 기초적 연구)

  • Seo, Deok-Hyun;Kim, Seong-Sik;Jeong, Yong-Sik;Im, Nam-Ki;Lee, Sang-Beom
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.69-74
    • /
    • 2005
  • The construction of house in Korea firstly has been made up quantitative supply and margin of confined land until the latest. But, residents interest of living environment, demand of high-quality has varied with the latest elevation of life quality Specially, the interest for environment-friendly architecture is increased by the recent well-being trend in 2002, So, construction company and construction materials manufacturing industry are trying to offer more healthy and agreeable indoor aerial environment. Related circles do their best to commercialize and develop environment-friendly finish materials which influence indoor aerial environment. Therefore, in this study, that developing raw material and productive system that can minimize hazardous article quality discharge with formaldehyde in development of correction of deformities board such as plywood that is used mainly by a environment-friendly materials indoor finish, and examines application possibility of construction correction of deformities board through properties of matter examination by purpose, do.

Accuracy Improvement of KOMPSAT-3 DEM Using Previous DEMs without Ground Control Points

  • Lee, Hyoseong;Park, Byung-Wook;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.241-248
    • /
    • 2017
  • GCPs (Ground Control Points) are needed to correct the DEM (Digital Elevation Model) produced from high-resolution satellite images and the RPC (Rational Polynomial Coefficient). It is difficult to acquire the GCPs through field surveys such as GPS surveys and to read the image coordinates corresponding to the GCPs. In addition, GCPs cannot cover the entire image of the test site, and the RPC correction results may be influenced by the arrangement and distribution of the GCPs in the image. Therefore, a new method for the RPC correction is needed. In this study, an LHD (Least-squares Height Difference) DEM matching method was applied using previous DEMs: SRTM DEM, digital map DEM, and corrected IKONOS DEM. This was carried out to correct the DEM produced from KOMPSAT-3 satellite images and the provided RPC without GCPs. The IKONOS DEM had the highest accuracy, and the height accuracy was about ${\pm}3m$ RMSE in a mountainous area and about ${\pm}2m$ RMSE in an area with only low heights.

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

AUTOMATIC ORTHORECTIFICATION OF AIRBORNE IMAGERY USING GPS/INS DATA

  • Jang, Jae-Dong;Kim, Young-Seup;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.684-687
    • /
    • 2006
  • Airborne imagery must be precisely orthorectified to be used as geographical information data. GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) data were employed to automatically orthorectify airborne images. In this study, 154 frame airborne images and LIDAR vector data were acquired. LIDAR vector data were converted to raster image for employing as reference data. To derive images with constant brightness, flat field correction was applied to the whole images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated using 50 ground control points collected in arbitrary selected five images and LIDAR intensity image. In validation results, RMSE (Root Mean Square Error) was 0.365 smaller then two times of pixel spatial resolution at the surface. It is possible that the derived mosaicked airborne image by this automatic orthorectification method is employed as geographical information data.

  • PDF

Acquired Simulated Brown Syndrome Combined with Blepharoptosis after Upper Blepharoplasty (상안검성형술 후 발생한 후천성 유사 브라운증후군과 안검하수의 치험례)

  • Do, Eon Rok;Ha, Won Ho;Park, Dae Hwan
    • Archives of Craniofacial Surgery
    • /
    • v.13 no.2
    • /
    • pp.130-134
    • /
    • 2012
  • Purpose: Brown syndrome is motility disorder of the eyeball which shows limited elevation in adduction and occurs very rarely after eye surgery. The authors have experienced a case of strabismus-like Brown syndrome combined with blepharoptosis and report this case with the review of literatures. Methods: A 28-year-old female suffered from hypotropia in the primary gaze and severe blepharoptosis with diplopia of the right eye after upper blepharoplasty. Rotation showed an inability to elevate the adducted right eye. She underwent extraocular muscle surgery about the 7 mm tucking of the right superior rectus muscle and 6 mm recession of right inferior rectus muscle. Intraoperatively, injury of the superior rectus muscle and foreign body were observed. Seven months after the extraocular surgery, the patient underwent frontalis muscle transfer on the right upper eyelid for the correction of blepharoptosis. Results: Postoperatively, the patient was orthophoric in the primary gaze, and she had improvements in the correction of blepharoptosis and eyeball movement. Conclusion: Repeated eyelid surgeries increase the risk of ocular motility disorder. Careful approach is essential for the proper treatment and successful outcome in secondary surgeries.

Development of Wave Height Field Measurement System Using a Depth Camera (깊이카메라를 이용한 파고장 계측 시스템의 구축)

  • Kim, Hoyong;Jeon, Chanil;Seo, Jeonghwa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.382-390
    • /
    • 2021
  • The present study suggests the application of a depth camera for wave height field measurement, focusing on the calibration procedure and test setup. Azure Kinect system is used to measure the water surface elevation, with a field of view of 800 mm × 800 mm and repetition rate of 30 Hz. In the optimal optical setup, the spatial resolution of the field of view is 288 × 320 pixels. To detect the water surface by the depth camera, tracer particles that float on the water and reflects infrared is added. The calibration consists of wave height scaling and correction of the barrel distortion. A polynomial regression model of image correction is established using machine learning. The measurement results by the depth camera are compared with capacitance type wave height gauge measurement, to show good agreement.

Improving usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: III. Correction for Advection Effect on Determination of Daily Maximum Temperature Over Sloped Surfaces (기상청 동네예보의 영농활용도 증진을 위한 방안: III. 사면 일 최고기온 결정에 미치는 이류효과 보정)

  • Kim, Soo-Ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • The effect of solar irradiance has been used to estimate daily maximum temperature, which make it possible to reduce the error inherent to lapse-rate based elevation difference correction in mountainous terrain. Still, recent observations indicated that the effect of solar radiation would need correction for estimation of daily maximum temperature. It was attempted to examine what would cause the variability of solar irradiance effect in determination of daily maximum temperature under natural field conditions and to suggest improved methods for estimation of the temperature distribution over mountainous regions. Temperature at 1500 and the wind speed for 1100 to 1500 were obtained at 10 validation sites with various topographical features including slope and aspect within a mountainous $50km^2$ catchment for 2012-2013. Lapse-rate corrected temperature estimates on clear days were compared with these observations, which would represent the differential irradiance effect among sloped surfaces. Results indicated a negative correlation between the mean wind speed and the estimation error. A simple scheme was derived from relationship between wind speed and estimation error for daily temperature to correct the effect of solar radiation. This scheme was incorporated into an existing model to estimate daily maximum temperature based on the effect of solar radiation. At 10 validation sites on clear days, estimates of 1500 LST temperature with and without the correction scheme were compared. It was found that a substantial improvement was achieved when the correction scheme was applied in terms of bias correction as well as error size reduction at all sites.