• Title/Summary/Keyword: elevated temperatures test

Search Result 152, Processing Time 0.026 seconds

Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates (가황 천연고무의 인장강도에 미치는 온도의 영향)

  • Ko, Young-Chon;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2001
  • This study was related with the effect of elevated temperature on the tensile strength of edge-cut samples. There was a different tensile strength behavior of uncut samples and pre-cut samples under different test temperatures. Tensile strength of uncut sample decreases with increasing test temperature. When pro-cut size(C) is larger than critical cut size($C_{cr}$), tensile strength or pre-cut specimen at $80^{\circ}C$ is higher than that of pre-cut specimen at room temperature (RT). Test specimens under $80^{\circ}C$ condition exhibited more secondary cracks at the crack tip region compared to room temperature conditions. However, secondary cracks of pre-cut specimens are not clearly developed at $110^{\circ}C$. Differences in tensile strength induced by different test temperature seem to be responsible for the strain-induced crystallization and micro-cracking patterns.

  • PDF

Design of High Strength Concrete Filled Tubular Columns For Tall Buildings

  • Liew, J.Y. Richard;Xiong, M.X.;Xiong, D.X.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Ultra-high strength concrete and high tensile steel are becoming very attractive materials for high-rise buildings because of the need to reduce member size and structural self-weight. However, limited test data and design guidelines are available to support the applications of high strength materials for building constructions. This paper presents significant findings from comprehensive experimental investigations on the behaviour of tubular columns in-filled with ultra-high strength concrete at ambient and elevated temperatures. A series of tests was conducted to investigate the basic mechanical properties of the high strength materials, and structural behaviour of stub columns under concentric compression, beams under moment and slender beam-columns under concentric and eccentric compression. High tensile steel with yield strength up to 780 MPa and ultra-high strength concrete with compressive cylinder strength up to 180 MPa were used to construct the test specimens. The test results were compared with the predictions using a modified Eurocode 4 approach. In addition, more than 2000 test data samples collected from literature on concrete filled steel tubes with normal and high strength materials were also analysed to formulate the design guide for implementation in practice.

The Effect of the Heating Conditions on the Warm Hydro-Formability of the Alumium Alloys (알루미늄합금의 열간 액압성형법 성형성에 대한 가열조건의 영향도 분석)

  • Kim, Bong-Joon;Park, Kwang-Su;Ryu, Jong-Soo;Son, Sung-Man;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.172-176
    • /
    • 2005
  • Modern automobiles are built with a steadily increasing variety of materials and semifinished products. The traditional composition of steel sheet and cast iron is being replaced with other materials such as aluminum and magnesium. But low formability of these materials has prevented the application of the automotive components. The formability can be enhanced by conducting the warm hydroforming using induction heating device which can raise the temperature of the specimen very quickly. The specimen applied to the test is A6061, A7075 extruded tubes which belong to the age-hardenable aluminum alloys. But in the case of A6061 age hardening occurs at room temperature or at elevated temperatures before and after the forming process. In this study the effects of the heating condition such as heating time, preset temperature, holding time during die closing and forming time on the hydroformability are analyzed to evaluate the phenomena such as dynamic strain hardening and ageing hardening at high temperatures after the hydroforming process.

Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures

  • Mazloom, Moosa;Karimpanah, Hemin;Karamloo, Mohammad
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.375-386
    • /
    • 2020
  • In the present study, the effect of basalt, glass, and hybrid glass-basalt fibers on mechanical properties and fracture behavior of self-compacting concrete (SCC) mixes have been assessed at room and elevated temperatures. To do so, twelve mix compositions have been prepared such that the proper workability, flowability, and passing ability have been achieved. Besides, to make comparison possible, water to binder ratio and the amount of solid contents were kept constant. Four fiber dosages of 0.5, 1, 1.5, and 2% (by concrete volume) were considered for monotype fiber reinforced mixes, while the total amount of fiber were kept 1% for hybrid fiber reinforced mixes. Three different portions of glass and basalt fiber were considered for hybridization of fibers to show the best cocktail for hybrid basalt-glass fiber. Test results indicated that the fracture energy of mix is highly dependent on both fiber dosage and temperature. Moreover, the hybrid fiber reinforced mixes showed the highest fracture energies in comparison with monotype fiber reinforced specimens with 1% fiber volume fraction. In general, hybridization has played a leading role in the improvement of mechanical properties and fracture behavior of mixes, while compared to monotype fiber reinforced specimens, hybridization has led to lower amounts of compressive strength.

Effect of Hot Extrusion on the Mechanical Properties of 6061 Aluminum Alloy composites Reinforced with SiC whisker (SiC휘스커로 강화한 6061 Al합금 복합재료의 기계적 특성에 미치는 열간압출의 영향)

  • Kim, Jun-Su;Lim, Su-Geun
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.132-140
    • /
    • 1996
  • Both cast and extruded composites of SiC whisker reinforced 6061 Al alloy matrix were fabricated by high pressure infiltration of the alloy melt into the SiC preform and subsequent hot extrusion of the composite ingots. The micro structures, age hardening behavior and mechanical properties have been examined on the both cast and extruded composites of SiCw/6061. The cast composites of SiCw/6061 were obtained in which SiC whiskers were randomly oriented. Hot extrusion of these cast composites lead to alignment of the whisker in the direction of extrusion. Strengthening effect of whisker in the extruded composites is lower than that of the cast composites. The cast composites of SiCw/6061 showed higher thensile strength and lower elongation than extruded composites of SiCw/6061 at all testing temperatures. Lower tensile strength and higher elongation of the extruded composites were attributable to fine grain structures in which grain boundary sliding occruued preferentially at elevated temperatures.

  • PDF

Influence of Heat Treatment on Transformation Characteristics in an Unidirectionally Solidified Cu-Al-Ni Alloy (일방향 응고된 Cu-Al-Ni 합금의 변태특성에 미치는 열처리 영향)

  • Park, Y.K.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.2
    • /
    • pp.90-96
    • /
    • 2003
  • The effect of betatizing temperature on microstructure and transformation characteristics in a Cu-AI-Ni based pseudoelastic alloy fabricated by heated mold continuous casting by using metallography, XRD and calorimetry. The microstructure of cast rod betatized at $600^{\circ}C$ revealed a ${\beta}_1$ parent phase and a ${\gamma}_2$ phase precipitated along the casting direction. When the cast rod was betatized at the elevated temperature above $600^{\circ}C$, the ${\gamma}_2$ phase is completely dissolved into the matrix so that the volume fraction of the ${\gamma}_2$ phase was decreased. The parent phase was stabilized by betatizing at $600^{\circ}C$. However, the ${\beta}_1$ parent phase was transformed to both ${{\beta}_1}^{\prime}$ and ${{\gamma}_1}^{\prime}$ martensites with increasing betatizing temperatures above $600^{\circ}C$, while $M_s$ and $A_s$ temperatures were decreased. The stress-strain curves for compression test were not same with betatizing temperature; the stress-strain curves of the specimen betatized at $600^{\circ}C$ and $700^{\circ}C$ were linear but those of the specimen betatized at $800^{\circ}C$ and $900^{\circ}C$ were not linear.

Forming Limit of AZ31B Magnesium Alloy Sheet in the Deep Drawing with Cross Shaped Die (십자 형상 금형의 디프 드로잉에서 AZ31B 마그네슘 합금판재의 성형 한계)

  • Hwang, S.H.;Choi, S.C.;Kim, H.Y.;Kim, H.J.;Hong, S.M.;Shin, Y.S.;Lee, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.374-377
    • /
    • 2008
  • Magnesium alloy sheets are usually formed at temperatures between $150^{\circ}C$and $300^{\circ}C$ because of their poor formability at room temperature. In the present study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. First, tensile tests and the limit dome height test were carried out at elevated temperatures to get the mechanical properties and forming limit diagram, respectively. And then deep drawing of cross shaped die was tried to get the minimum corner radius and forming limit at specific temperature. Blank shape, punch velocity, minimum corner radius, fillet size, etc, were determined by finite element analysis physical try-outs. Especially, optimum punch and die temperature were suggested through the temperature-deformation analysis using Pam-stamp.

  • PDF

Experimental studies on the behaviour of headed shear studs for composite beams in fire

  • Lim, Ohk Kun;Choi, Sengkwan;Kang, Sungwook;Kwon, Minjae;Choi, J. Yoon
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.743-752
    • /
    • 2019
  • Steel and concrete composite structures are commonly applied in multi-story buildings as they maximise the material strength through composite action. Despite the popularity of employing a trapezoidal deck slab, limited experimental data are available under elevated temperatures. The behaviour of the headed shear stud embedded in a transverse trapezoidal deck and solid slab was investigated at both ambient and fire conditions. Twelve push-out tests were conducted according to the ISO 834 standard fire utilising a customised electric furnace. A stud shearing failure was observed in the solid slab specimen, whereas the failure mode was changed from a concrete-dominated failure to the stud shearing in the transverse deck specimen with an increase in temperature. Comparisons between the experimental observations and design requirements are presented. The Eurocode design guidance on the transverse deck slab gives a highly conservative estimate for shear resistance. A new design formula was proposed to determine the capacity of the shear connection regardless of the slab type when the stud shearing occurs at high temperatures.

Optimum time-censored ramp soak-stress ALT plan for the Burr type XII distribution

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.2
    • /
    • pp.125-150
    • /
    • 2014
  • Accelerated life tests (ALTs) are extensively used to determine the reliability of a product in a short period of time. Test units are subject to elevated stresses which yield quick failures. ALT can be carried out using constant-stress, step-stress, progressive-stress, cyclic-stress or random-stress loading and their various combinations. An ALT with linearly increasing stress is ramp-stress test. Much of the previous work on planning ALTs has focused on constant-stress, step-stress, ramp-stress schemes and their various combinations where the stress is generally increased. This paper presents an optimal design of ramp soak-stress ALT model which is based on the principle of Thermal cycling. Thermal cycling involves applying high and low temperatures repeatedly over time. The optimal plan consists in finding out relevant experimental variables, namely, stress rates and stress rate change points, by minimizing variance of reliability function with pre-specified mission time under normal operating conditions. The Burr type XII life distribution and time-censored data have been used for the purpose. Burr type XII life distribution has been found appropriate for accelerated life testing experiments. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF

Effect of heat treatment on mechanical properties of overlay welds (육성 용접부의 기계적 성질에 미치는 열처리조건의 영향)

  • 이기호;김기철;윤의박
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.30-37
    • /
    • 1989
  • Effect of heat treatment on mechanical properties of an overlay weldment was investigated. Over welding was carried out on the structural C-Mn mild steel substrate to take required test specimens. Shielded metal arc welding process with 13Cr-0.2Ni stick electrode was applied. The heat treatment temperatures and holding times were $450{\circ}C., 550{\circ}C., 650{\circ}C., 750{\circ}C., 850{\circ}C.$ and 0.5hr, 2hr, 10hr, respectively. Mechanical tests and microscopic inspection were also carried out to investigate welds soundness. Test results indicated that carbon migration was dominant near bonded zone. At temperature of around 650.deg. C, carburized layer and decarburized layer were formed remarkably along overlay welds region and C-Mn mild steel region, respectively. The wideth of these layers became wider with increasing heat treatment temperature and/or holding time at the elevated temperature, and this relationship agreed with Larson-Miller parameter. Side bending test results demonstrated that the crack free region of overlay welds could be deduced from the relationship between temperature and holding time.

  • PDF