• Title/Summary/Keyword: elementary concepts

Search Result 684, Processing Time 0.03 seconds

A study on categories of questions when holding counselling on learning math in regards to grounded theoretical approaches (근거이론적 접근에 따른 수학학습 상담 발문 유형에 대한 연구)

  • Ko, Ho Kyoung;Kim, Dong Won;Lee, Hwan Chul;Choi, Tae Young
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.1
    • /
    • pp.73-92
    • /
    • 2014
  • This study was performed in part with the task to find measures to improve the defining characteristics of feelings, value, interest, self-efficacy, and others aspects in regards to learning math among elementary and middle school students. For this study, it was essential to understand the appropriate questions that are needed to be asked during a consultation at a math clinic, for students that are having a hard time learning math. As a method for performing this study, the content of scheduled counseling over 2 years from a math clinic were collected and the questions that were given and taken were analyzed in order to figure out the types of questions needed in order to effectively examine students that are facing difficulty with learning math. The analysis was performed using Grounded theory analysis by Strauss & Corbin(1998) and went through the process of open coding, axial coding, and selective coding. For the paradigm in the categorical analysis stage, 'attitude towards learning math' was set as the casual condition, 'feelings towards learning math' was set as the contextual condition, 'confidence in one's ability to learn math' was set as the phenomenon, 'individual tendencies when learning math' was set as the intervening condition, 'self-management of learning math' was set as the action/interaction strategy, and 'method of learning' was set as the consequence. Through this, the questions that appeared during counseling were linked into categories and subcategories. Through this process, 81 concepts were deducted, which were grouped into 31 categories. I believe that this data can be used as grounded theory for standardization of consultation in clinics.

  • PDF

Development and Application of Inquiry Modules for Instruction for the Concept of Straight propagation of Light (빛의 직진 개념 지도를 위한 탐구 학습모듈의 개발 및 적용)

  • Kim, Kyu Hwan;Kim, Jung Bog
    • Journal of Science Education
    • /
    • v.35 no.2
    • /
    • pp.173-192
    • /
    • 2011
  • The purpose of this study was to develop inquiry modules for learning straight propagation of light, to verify their efficiency, and to acquire implications. this study proposes teaching modules for improvements of light experiments, which were developed in this work. Inquiry modules were applied to 75 school teachers(8 elementary school teachers, 67 middle school and high school teachers) for examining that the modules make teachers have the scientific concepts. Then, conception changes were analyzed except 5 teachers who responded poorly. The pre-test result shows that most teachers have alternative conceptions, which is that they thought the bright shape on apparatus's bottom panel itself shown in the textbook as evidence for the path of light's straight propagation. The post-test result shows this alternative conception was changed into scientific conception. Unlikely pretest, most teachers' conception was changed into the scientific conception that the light come from a light source. Teachers are able to express that the light beam comes from a miniature electric bulb. Further more, most teachers can draw light's path correctly; from the miniature electric bulb, through vertical panel having a hole, to the apparatus bottom.

  • PDF

Development and Usage of Interactive Digital Linear Algebra Textbook (대화형 수학 디지털교과서 개발과 활용 사례 연구 - 선형대수학을 중심으로-)

  • Lee, Sang-Gu;Lee, Jae Hwa;Park, Kyung-Eun
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • The 4th industrial revolution is coming. In order to prepare for the new learning environment with it, we may need digital mathematics textbooks that fully utilize all possible technologies. So various attempts have been made in elementary and middle school mathematics education. However, despite the importance of higher mathematics, we haven't seen a best possible math digital textbooks yet in Korea. In this paper, we introduce our new model of interactive math digital textbook about Linear Algebra/ Calculus/ Differential Equations/ Statistics/ Engineering Math. Especially, this manuscript focuses on our experience of using digital contents and interactive labs for developing a new model for linear algebra digital textbook. We introduce our works on linear algebra digital textbooks which include pdf e-book, web contents, video clips of lectures, interactive lab. Using this linear algebra digital textbook, students can freely use any mobile devices to access diverse learning materials, lessons, and hands-on exercises without any limitations. Also, times saved in the computation, coding, and typing process can be used to have more discussions for deeper understanding of mathematical concepts. This type of linear algebra digital textbook, which contains all interactive free cyber-lab with codes and all lectures for each sections, can be considered as a new model for the next generation of math digital textbook.

Impacting Student Confidence : The effects of using virtual manipulatives and increasing fraction understanding. (수학에 대한 자신감 증진: 가상학습교구를 통한 분수 개념 이해의 결과)

  • ;Jenifer Suh;Patricia S. Moyer
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.2
    • /
    • pp.207-219
    • /
    • 2004
  • There have been studies reporting the increase in student confidence in mathematics when using technology. However, past studies indicating a positive correlation between technology and confidence in mathematics do not explain why they see this positive outcome. With increased availability and easy access to the Internet in schools and the development of free online virtual manipulatives, this research was interested in how the use of virtual manipulatives in mathematics can affect students confidence in their mathematical abilities. Our hypothesis was that the classes using virtual manipulatives which allows students to connecting dynamic visual image with abstract symbols will help students gain a deeper conceptual understanding of math concept thus increasing their confidence and ability in mathematics. The participants in this study were 46 fifth-grade students in three ability groups: one high, one middle and one low. During a two-week unit on fractions, students in three groups interacted with several virtual manipulative applets in a computer lab. Data sources in the project included a pre and posttest of students mathematics content knowledge, Confidence in Learning Mathematics Scale, field notes and student interviews, and classroom videotapes. Our aim was to find evidence for increased level of confidence in mathematics as students strengthened their understanding of fraction concepts. Results from the achievement score indicated an overall main effect showing significant improvement for all ability groups following the treatment and an increase in the confidence level from the preassessment of the Confidence in Learning Mathematics Scale in the middle and high ability groups. An interesting finding was that the confidence level for the low ability group students who had the highest confidence level in the beginning did not change much in the final confidence scale assessment. In the middle and high ability groups, the confidence level did increase according to the improvement of the contest posttest. Through interviews, students expressed how the virtual manipulatives assisted their understanding by verifying their answers as they worked and facilitated their ability to figure out math concept in their mind and visually.

  • PDF

An Analysis of the Communication Patterns according to the Mathematical Problem Types in Small Group (소집단 문제해결 학습에서 수학 문제 유형에 따른 의사소통의 패턴 분석)

  • Choi, Ji-Young;Lee, Dae-Hyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.3
    • /
    • pp.247-265
    • /
    • 2009
  • In the 21C information-based society, there is an increasing demand for emphasizing communication in mathematics education. Therefore the purpose of this study was to research how properties of communication among small group members varied by mathematical problem types. 8 fourth-graders with different academic achievements in a classroom were divided into two heterogenous small groups, four children in each group, in order to carry out a descriptive and interpretive case study. 4 types of problems were developed in the concepts and the operations of fractions and decimals. Each group solved four types of problems five times, the process of which was recorded and copied by a camcorder for analysis, among with personal and group activity journals and the researcher's observations. The following results have been drawn from this study. First, students showed simple mathematical communication in conceptual or procedural problems which require the low level of cognitive demand. However, they made high participation in mathematical communication for atypical problems. Second, even participation by group members was found for all of types of problems. However, there was active communication in the form of error revision and complementation in atypical problems. Third, natural or receptive agreement types with the mathematical agreement process were mainly found for conceptual or procedural problems. But there were various types of agreement, including receptive, disputable, and refined agreement in atypical problems.

  • PDF

Research on Teachers' Recognition about the Introduction of Mathematics Workbook and the Suggestion of Its Organization (수학 워크북 도입에 대한 교사들의 인식 조사 및 구성 방안 제안)

  • Kim, Bu-Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.271-293
    • /
    • 2007
  • Mathematics workbook is developed according to the amendment of the 7th national curriculum of mathematics. This study polled 300 national mathematics teachers in the elementary school, middle school, and high school to find out what they think in conjunction with the introduction of mathematics workbook such as needs for mathematics workbook, teachers' recognition about the system of mathematics textbook and workbook which are proper for lesson of achievement level and organization of mathematics workbook before using the mathematics workbook in school. As a results, mathematics teachers want the introduction of workbook because it helps students' self-regulated learning of mathematics and it is material very valuable for teachers to give lessons of achievement level. Also, we suggest the organization and contents of mathematics workbook on the base of our survey. Mathematics workbook has a lot of exercises assessing into the upper, intermediate, lower level in the contents, concepts of mathematics learning. It has the items developed with various problem solving methods and emphasis on performance tests, an essay-type examination and a periodical assessment. It has the problem posing items and the corner that helps students revise their mathematical errors and proposes useful, interesting mathematical activities and the commentary of a correct answer to questions at the tail of the book.

  • PDF

The Features of Intuitive Thinking Emerged During Problem Solving Activities About Thermal Phenomena: When Intuitive Thinking Appears and How it is Related to Logical Thinking (열 현상에 대한 초등학생들의 문제해결 과정에서 나타나는 직관적 사고의 특징 -발현의 맥락 및 논리적 사고와의 관계를 중심으로-)

  • Park, Joonhyeong;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.3
    • /
    • pp.523-537
    • /
    • 2017
  • The purpose of this study is to investigate the features of elementary students' intuitive thinking emerged during problem solving activities as it related to thermal phenomena, focusing on when intuitive thinking appears and how it is related to logical thinking. For this, we presented a problem related to thermal phenomena to nine 5th-grade students, and examined how students' thinking emerged in the activities. We conducted clinical interviews to investigate the thinking process of students. The results of this study are as follows. First, students made their own solutions and justified it later during the emergence process of intuitive thinking. It was also found that students connected concrete materials and abstract concepts intuitively. They solved the problem by making predictions even when information is insufficient. Second, it was shown that intuitive thinking can emerge through the intended strategies such as drawing a mental image, thinking from a different perspective, and integrating methods. These results, which are related to the students' intuitive thinking has received little attention and will be the basis for helping students in the context of discovery of their problem solving activities.

Effects of Educational Context Variables on Science Achievement and Interest in TIMSS 2015 (TIMSS 2015에서 과학 성취도와 흥미에 영향을 주는 교육맥락변인 분석)

  • Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.113-122
    • /
    • 2018
  • The purpose of this study is to investigate the effects of the educational context variables on students' science achievement and interest in TIMSS 2015. TIMSS 2015 science data and questionnaire results were used to fit the Hierarchical Linear Model (HLM) in this study. According to the results, books at home, parents' level of education, and students' views on science lessons have significant influence on science achievement of above-high level 4th-grade students, and books at home on below-intermediate level 4th-grade students. Books at home, students' views on science lessons, and school composition by student economic background have significant influence on science achievement of above-high level 8th-grade students, and books at home and students' views on science lessons on science achievement of below-Intermediate level 8th-grade students. In all grade levels, books at home, and students' views on science lessons have significant influence on science achievement and interest. Discussed in the conclusion are ways to improve science teaching and learning including offering systematic reading programs for all students, reinforcement of student-participation in science classes, connecting science hands-on activities with science concepts for below-Intermediate level elementary students, and so on.

Analysis of Verbal Interaction within a Homogeneous Group in Inquiry Activity of the 'Use of Lenses' Unit in Elementary School (초등학교 '렌즈의 이용' 단원 탐구활동에서 나타나는 동질 모둠별 언어적 상호작용의 특징 분석)

  • Chung, Hee-Jung;Kwon, Gyeong-Pil
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.327-333
    • /
    • 2017
  • The purpose of this research was to analyze characteristics of verbal interactions of each homogeneous group in the learning of the 6th grade's 'Use of Lenses' Unit. For this research, six learning sessions were conducted in one 6th grade class composed of a high-academic-achievement group, an intermediate-academic-achievement group, and a low-academic-achievement group. All lessons were recorded, to analyze the verbal interactions of each group, and the transcribed data were analyzed using the verbal-interaction analytic framework. Results included: In the upper group, although opinions were presented more frequently, there were many negative verbal interactions in completing the tasks. The middle group was observed more specifically to accept peer opinions critically in their observational activities. The middle group's members were more active in presenting their opinions than listening to others' opinions. The lower group had difficulties in drawing conclusions because of a lack of ability to persuade peers or to respect the opinions of peers, even though the frequency of verbal interactions was higher than in other groups. Therefore, a homogeneous group structure is good for a simple activity involving a simple inquiry or an exchange of opinions, while a heterogeneous group structure is more effective in activities focused on understanding scientific concepts and knowledge.

Analyzation and Improvements of the Revised 2015 Education Curriculum for Information Science of Highschool: Focusing on Information Ethics and Multimedia (고등학교 정보과학의 2015 개정 교육과정에 대한 분석 및 개선 방안: 정보윤리와 멀티미디어를 중심으로)

  • Jeong, Seungdo;Cho, Jungwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.208-214
    • /
    • 2016
  • With the rising interest in intelligence information technology built on artificial intelligence and big data technologies, all countries in the world including advanced countries such as the United States, the United Kingdom, Japan and so on, have launched national investment programs in preparation for the fourth industrial revolution centered on the software industry. Our country belatedly recognized the importance of software and initiated the 2015 revised educational curriculum for elementary and secondary informatics subjects. This paper thoroughly analyzes the new educational curriculum for information science in high schools and, then, suggests improvements in the areas of information ethics and multimedia. The analysis of the information science curriculum is applied to over twenty science high schools and schools for gifted children, which are expected to play a leading role in scientific research in our country. In the future artificial intelligence era, in which our dependence on information technology will be further increased, information ethics education for talented students who will play the leading role in making and utilizing artificial intelligence systems should be strongly emphasized, and the focus of their education should be different from that of the existing system. Also, it is necessary that multimedia education centered on digital principles and compression techniques for images, sound, videos, etc., which are commonly used in real life, should be included in the 2015 revised educational curriculum. In this way, the goal of the 2015 revised educational curriculum can be achieved, which is to encourage innovation and the efficient resolution of problems in real life and diverse academic fields based on the fundamental concepts, principles and technology of computer science.