• Title/Summary/Keyword: elemental techniques

Search Result 115, Processing Time 0.023 seconds

Critical Management Factor of Elemental Techniques for Construction Automation System in High-Rise Building (고층건물 적용을 위한 시공자동화시스템 요소기술의 중점 관리사항 도출)

  • Cho, Nam-Seok;Kim, Chang-Won;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.15-16
    • /
    • 2011
  • Construction automation and robotics are being taken notice as an alternative to improve productivity and quality. Reflecting on these purpose, automation system, called RCA(Robotic-crane based Construction Automation) system, is developed and have been verified through a pilot project recently in Korea. To apply the RCA system in high-rise building effectively, each management factors of element technologies in the system is derived and assessed critical factor. The purpose of this study, management factors of element techniques, consisted of RCA system, is classified through questionnaires/interviews targeting system developers and construction managers in pilot project site, and critical factors is selected using AHP.

  • PDF

3D Image Display Method using Synthetic Aperture integral imaging (Synthetic aperture 집적 영상을 이용한 3D 영상 디스플레이 방법)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2037-2042
    • /
    • 2012
  • Synthetic aperture integral imaging is one of promising 3D imaging techniques to capture the high-resolution elemental images using multiple cameras. In this paper, we propose a method of displaying 3D images in space using the synthetic aperture integral imaging technique. Since the elemental images captured from SAII cannot be directly used to display 3D images in an integral imaging display system, we first extract the depth map from elemental images and then transform them to novel elemental images for 3D image display. The newly generated elemental images are displayed on a display panel to generate 3D images in space. To show the usefulness of the proposed method, we carry out the preliminary experiments using a 3D toy object and present the experimental results.

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.

A Study on the Calibration Techniques for Thermopile Pyranometer (일사계 교정기법에 관한 연구)

  • Jo, Dok-Ki;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.161-166
    • /
    • 2008
  • The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.

  • PDF

Compression of 3D color integral images using 2D referencing technique (2차원 참조 기법을 이용한 3D 컬러 집적 영상의 압축)

  • Kim, Jong-Ho;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2693-2700
    • /
    • 2009
  • This paper proposes an effective compression method to utilize the 3D integral image with large amount of data obtained by a lens array in various applications. The conventional compression methods for still images exhibit low performance in terms of coding efficiency and visual quality, since they cannot remove the correlation between elemental images. In the moving picture compression methods, 1D scanning techniques that produce a sequence of elemental images are not enough to remove the directional correlation between elemental images. The proposed method effectively sequences the elemental images from an integral image by the 2D referencing technique and compresses them using the multi-frame referencing of H.264/AVC. The proposed 2D referencing technique selects the optimal reference image according to vertical, horizontal, and diagonal correlation between elemental images. Experimental results show that compression with the sequence of elemental images presents better coding efficiency than that of still image compression. Moreover, the proposed 2D referencing technique is superior to the 1D scanning methods in terms of the objective performance and visual quality.

Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

  • Yasar, Abdullah;Tabinda, Amtul Bari;Shahzadi, Uzma;Saleem, Pakeeza
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.620-626
    • /
    • 2014
  • The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal.

A Study on Interactive Sound Installation and User Intention Analysis - Focusing on an Installation: Color note (인터렉티브 사운드 설치와 사용자 의도 분석에 관한 연구 - 작품 Color note 를 중심으로)

  • Han, Yoon-Jung;Han, Byeong-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.268-273
    • /
    • 2008
  • This work defines user intention according to intention range, and also proposes an interactive sound installation which reflects and varies above features. User intention consists of several decomposition concepts, which are elemental intentions, partial intentions, and a universal intention. And also, each concept is defined as inclusion/affiliation relationship with other concepts. For the representation of elemental intention, we implemented an musical interface, Color note, which represents the colors and notes according to response of participants. We also propose Harmonic Defragmentation (HD), which arranges the partial intentions with harmonic rule. Finally, the universal intention is inferred to the comprehensive direction of elemental intentions. We used Karhunen-Lo$\`{e}$ve(K-L) Transform for the inference. For verifying the validity of our proposed interface, the "Color Note," and the various techniques, we installed our work and surveyed various users for the evaluation of HD and statistical techniques. Also, we commissioned another survey to find out satisfaction measurement which was used for expressing universal intention.

  • PDF

A Study on the Uncertainty Analysis for Thermopile Pyranometer Calibrations (일사계 교정을 위한 불확실성 분석에 관한 연구)

  • Jo, D.K.;Chun, I.S.;Jeon, M.S.;Kang, Y.H.;Auh, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.

  • PDF

Parallel Processing Method for Generating Elemental Images from Hexagonal Lens Array (육각형 렌즈 어레이로부터 요소영상을 생성하기 위한 병렬 처리 기법)

  • Kim, Do-Hyeong;Park, Chan;Jung, Ji-Sung;Kwon, Ki-Chul;Kim, Nam;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • According that most integral imaging techniques have used rectangular lens array, this integrated distribution of light is recorded in the form of a rectangular grid. However, hexagonal lens array gives a more accurate approximation of ideal circular lens and provides higher pickup/display density than rectangular lens array[4]. Using the parallel processing technique in order to generate the elemental imaging for hexagonal lens array, each pixel that compose the elemental imaging should be determined to belong to the hexagonal lens. This process is output to the screen for every pixel in progress, and many computations are required. In this paper, we have proposed parallel processing method using an OpenCL to generate the elemental imaging for hexagonal lens array in 3D volume date. In the experimental result of proposed method show speed of 20~60 fps for hexagonal lens array of $20{\times}20$ sizes and input data of Male[$128{\times}256{\times}256$] volume data.