• Title/Summary/Keyword: elemental image

Search Result 134, Processing Time 0.035 seconds

Parallel Processing for Integral Imaging Pickup Using Multiple Threads

  • Jang, Young-Hee;Park, Chan;Park, Jae-Hyeung;Kim, Nam;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.30-34
    • /
    • 2009
  • Many studies have been done on the integral imaging pickup whose objective is to get efficiently elemental images from a lens array with respect to three-dimensional (3D) objects. In the integral imaging pickup process, it is necessary to render an elemental image from each elemental lens in a lens array for 3D objects, and then to combine them into one total image. The multiple viewpoint rendering (MVR) is one of various methods for integral imaging pickup. This method, however, has the computing and rendering time problem for obtaining element images from a lot of elemental lens. In order to solve the problems, in this paper, we propose a parallel MVR (PMVR) method to generate elemental images in a parallel through distribution of elemental lenses into multiple threads simultaneously. As a result, the computation time of integral imaging using PMVR is reduced significantly rather than a sequential approach and then we showed that the PMVR is very useful.

Three-dimensional image processing using integral imaging method (집적 영상법을 이용한 3차원 영상 정보 처리)

  • Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.150-151
    • /
    • 2005
  • Integral imaging is one of the three-dimensional(3D) display methods, which is an autostereoscopic method. The integral imaging system can provide volumetric 3D image which has both vertical and horizontal parallaxes. The elemental image which is obtained in the pickup process by lens array has the 3D information of the object and can be used for the depth perception and the 3D correlation. Moreover, the elemental image which represents a cyber-space can be generated by computer process.

  • PDF

Computational Technique of Volumetric Object Reconstruction in Integral Imaging by Use of Real and Virtual Image Fields

  • Shin, Dong-Hak;Cho, Myung-Jin;Park, Kyu-Chil;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.708-712
    • /
    • 2005
  • We propose a computational reconstruction technique in large-depth integral imaging where the elemental images have information of three-dimensional objects through real and virtual image fields. In the proposed technique, we reconstruct full volume information from the elemental images through both real and virtual image fields. Here, we use uniform mappings of elemental images with the size of the lenslet regardless of the distance between the lenslet array and reconstruction image plane. To show the feasibility of the proposed reconstruction technique, we perform preliminary experiments and present experimental results.

  • PDF

Synthesis method of elemental images from Kinect images for space 3D image (공간 3D 영상디스플레이를 위한 Kinect 영상의 요소 영상 변환방법)

  • Ryu, Tae-Kyung;Hong, Seok-Min;Kim, Kyoung-Won;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.162-163
    • /
    • 2012
  • In this paper, we propose a synthesis method of elemental images from Kinect images for 3D integral imaging display. Since RGB images and depth image obtained from Kinect are not able to display 3D images in integral imaging system, we need transform the elemental images in integral imaging display. To do so, we synthesize the elemental images based on the geometric optics mapping from the depth plane images obtained from RGB image and depth image. To show the usefulness of the proposed system, we carry out the preliminary experiments using the two person object and present the experimental results.

  • PDF

Accurate lattice extraction of elemental image array and pre-processing methods in computational integral imaging (컴퓨터 집적 영상에서의 정교한 요소 영상 추출 및 전처리 방법)

  • Son, Jeong-Min;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1164-1170
    • /
    • 2011
  • In this paper, we propose accurate lattice extraction of elemental image array and pre-processing methods in computational integral imaging. Pre-processing methods remove distortions and noises of the image. Such distortions occurred in pickup systems are rotational errors. Distortions will degrade the resolution of reconstructed images. To overcome this problem, we propose our methods for extraction of elemental image array and pre-processing methods. Also, we describe that distortions affect the high quality reconstruction. Optical and computational experiments indicate that reconstructed images applied our methods is better than reconstructed images unapplied our methods.

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Enhanced Image Mapping Method for Computer-Generated Integral Imaging System (집적 영상 시스템을 위한 향상된 이미지 매핑 방법)

  • Lee Bin-Na-Ra;Cho Yong-Joo;Park Kyoung-Shin;Min Sung-Wook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.295-300
    • /
    • 2006
  • The integral imaging system is an auto-stereoscopic display that allows users to see 3D images without wearing special glasses. In the integral imaging system, the 3D object information is taken from several view points and stored as elemental images. Then, users can see a 3D reconstructed image by the elemental images displayed through a lens array. The elemental images can be created by computer graphics, which is referred to the computer-generated integral imaging. The process of creating the elemental images is called image mapping. There are some image mapping methods proposed in the past, such as PRR(Point Retracing Rendering), MVR(Multi-Viewpoint Rendering) and PGR(Parallel Group Rendering). However, they have problems with heavy rendering computations or performance barrier as the number of elemental lenses in the lens array increases. Thus, it is difficult to use them in real-time graphics applications, such as virtual reality or real-time, interactive games. In this paper, we propose a new image mapping method named VVR(Viewpoint Vector Rendering) that improves real-time rendering performance. This paper describes the concept of VVR first and the performance comparison of image mapping process with previous methods. Then, it discusses possible directions for the future improvements.

Compression of Elemental Images Using Block Division in 3D Integral Imaging (3D 집적 영상에서 영역 분할을 이용한 요소 영상의 압축 기법)

  • Kang, Ho-Hyun;Shin, Dong-Hak;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.297-303
    • /
    • 2009
  • Integral imaging is a well-known 3D image recording and display technique. The huge size of integral imaging data requires a compression scheme to store and transmit 3D scenes. In the conventional compression scheme, the data amount of elemental images depends on the various recording condition such as the positional location of a 3D object, the illumination and specification of the lenslet array even if an identical pickup system is used. In this paper, to reduce the dependence of the image characteristics of elemental images on the pickup conditions, a compression scheme using block division on the elemental image of integral imaging is proposed. The proposed scheme provides an improved compression ratio by considering the local similarity of elemental images picked up from three-dimensional objects according to a positional location. To test the proposed scheme, various elemental images are picked up and a compression process is then carried out u sing a standard MPEG-4. Based on compression ratio results, the proposed compression scheme is improved by approximately 9% compared with the conventional compression method.

Depth Extraction of Partially Occluded 3D Objects Using Axially Distributed Stereo Image Sensing

  • Lee, Min-Chul;Inoue, Kotaro;Konishi, Naoki;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.275-279
    • /
    • 2015
  • There are several methods to record three dimensional (3D) information of objects such as lens array based integral imaging, synthetic aperture integral imaging (SAII), computer synthesized integral imaging (CSII), axially distributed image sensing (ADS), and axially distributed stereo image sensing (ADSS). ADSS method is capable of recording partially occluded 3D objects and reconstructing high-resolution slice plane images. In this paper, we present a computational method for depth extraction of partially occluded 3D objects using ADSS. In the proposed method, the high resolution elemental stereo image pairs are recorded by simply moving the stereo camera along the optical axis and the recorded elemental image pairs are used to reconstruct 3D slice images using the computational reconstruction algorithm. To extract depth information of partially occluded 3D object, we utilize the edge enhancement and simple block matching algorithm between two reconstructed slice image pair. To demonstrate the proposed method, we carry out the preliminary experiments and the results are presented.

3D Image Display Method using Synthetic Aperture integral imaging (Synthetic aperture 집적 영상을 이용한 3D 영상 디스플레이 방법)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2037-2042
    • /
    • 2012
  • Synthetic aperture integral imaging is one of promising 3D imaging techniques to capture the high-resolution elemental images using multiple cameras. In this paper, we propose a method of displaying 3D images in space using the synthetic aperture integral imaging technique. Since the elemental images captured from SAII cannot be directly used to display 3D images in an integral imaging display system, we first extract the depth map from elemental images and then transform them to novel elemental images for 3D image display. The newly generated elemental images are displayed on a display panel to generate 3D images in space. To show the usefulness of the proposed method, we carry out the preliminary experiments using a 3D toy object and present the experimental results.