• Title/Summary/Keyword: elemental analysis

Search Result 1,140, Processing Time 0.027 seconds

Formation of a V-Added Ti Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전합성과 확산 열처리를 이용한 V 이 첨가된 TiAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.696-700
    • /
    • 2002
  • The Ti-aluminide intermetallic compound was formed from high purity elemental Ti and Al foils by self-propagating, high-temperature synthesis(SHS) in hot press. formation of $TiAl_3$ at the interface between Ti and Al foils was controlled by temperature, pressure, heating rate, and so on. According to the thermal analysis, it is known in this study that the heating rate is the most important factor to form the intermetallic compound by this SHS reaction. The V layer addition between Al and Ti foils increased SHS reaction temperatures. The fully dense, well-boned inter-metallic composite($TiA1/Ti_3$Al) sheets of 700 m thickness were formed by heat treatment at $1000^{\circ}C$ for 10 hours after the SHS reaction of alternatively layered 10 Ti and 9 Al foils with the V coating layer. The phases and microstructures of intermetallic composite sheets were confirmed by EPMA and XRD.

High Electrochemical Activity of Pt-Cu Alloy Support on Carbon for Oxygen Reduction Reaction (산소 환원 반응을 위한 탄소기반 Pt-Cu 합금의 높은 전기적 촉매 활성)

  • KIM, HAN SEUL;RYU, SU CHAK;LEE, YOUNG WOOK;SHIN, TAE HO
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.549-555
    • /
    • 2019
  • Electrocatalysis of oxygen reduction reaction (ORR) using Pt nanoparticles or bimetal on carabon was studied. Currently, the best catalyst is platinum, which is a limited resource and expensive to commercialize. In this paper, we investigated the cheaper and more active electrocatalysts by making Pt nanoparticles and adding 3D transition metal such as copper. Electrocatalysts were obtained by chemical reduction based on ethylene glycol solutions. Elemental analysis and particle size were confirmed by XRD and TEM. The electrochemical surface area (ECSA) and activity of the catalyst were determined by electrochemical techniques such as cyclic voltammetry and linear sweep voltammetry method. The commercialized Pt support on carbon (Pt/C, JM), synthesis Pt/C and synthesis Pt3Cu1 alloy nanoparticles supported on carbon were compared. We confirmed that the synthesized Pt3-Cu1/C has high electrochemical performance than commercial Pt/C. It is expected to develop an electrocatalyst with high activity at low price by increasing the oxygen reduction reaction rate of the fuel cell.

Characterization of Metal(Cu, Zn)-Carbon/TiO2 Composites Derived from Phenol Resin and their Photocataytic Effects

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.196-203
    • /
    • 2008
  • Metal-carbon/$TiO_2$ composite photocatalysts were thermally synthesized through the mixing of anatase to metal(Cu, Zn) containing phenol resin in an ethanol solvent coagulation method. The BET surface area increases, with the increase depending on the amount of metal salt used. From SEM images, metal components and carbon derived from phenol resin that contains metal was homogeneously distributed to composite particles with porosity. XRD patterns revealed that metal and titanium dioxide phase can be identified for metal-carbon/$TiO_2$ composites, however, the diffraction peaks of carbon were not observed due to the low carbon content on the $TiO_2$ surfaces and due to the low crystallinity of the amorphous carbon. The results of a chemical elemental analysis of the metal-carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated metal components and Ti metal compared to that of any other elements. According to photocatalytic results, the MB degradation can be attributed to the three types of synergetic effect: photocatalysis, adsorptivity and electron transfer, according to the light absorption between the supporter $TiO_2$, metal species, and carbon layers.

Analysis of axisymmetric closed-die forging using UBET (UBET를 이용한 축대칭 형단조 해석)

  • 김동원;김헌영;신수정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.337-344
    • /
    • 1989
  • The upper bound elemental technique (UBET) is used to simulate the bulk flow characteristics in axisymmetric closed die forging process. Internal flow inside the cavity is predicted using a kinematically admissible velocity field that minimizes the rate of energy consumption. Application of the technique includes an assessment of the formation of flash and of degree of filling in rib-web type cavity using billets with various aspect rations. The technique considering bulging effect is performed in an incremental manner. The results of simulation show how it can be used for the prediction of forging load, metal flow, and free surface profile. The experiments are carried out with plasticine. There are good agreements in forging load and material flow in cavity between the simulation and experiment. The developed program using UBET can be effectively applied to the various forging problems.

The analysis design and operating characteristics of VCM actuator for auto focusing (자동초점 조절용 VCM 액추에이터 구동특성 분석)

  • Park, J.M.;Lim, H.W.;Chae, B.;Kim, D.G.;Kim, P.H.;Cho, G.B.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.447-448
    • /
    • 2007
  • Product development is consisting by trend that accommodate almost function digital cam in camera phone that can speak of Mobile appliance, and competition about number of elemental area of image sensor is consisting for market prior occupation between these. Propose in this research and small size camera phone self-focusing adjustment actuator that do city manufacture is similar with general storehouse pickup actuator drive way, but selected in cylindrical to reduce space that lens holder occupies because there is restriction loading of lens and space enemy. Target number of research established that execute drive displacement more than $600{\mu}m$ in 2.75V that is house voltage that is used in Mobile device that is general. Also, described about maximum transfer displacement characteristic, displacement response characteristic, hysteresis, response characteristic, smallest transfer step characteristic, actuator's drive characteristic that is manufactured to examination item of maximum consumption electric power by special quality estimation system that apply laser displacement sensor that produce itself to evaluate city manufactured actuator's special quality.

  • PDF

Electrical Properties of Cu/Mn Alloy Resistor with Low Resistance and Thermal Stability (낮은 저항과 열안정성을 가지는 Cu/Mn 합금저항의 전기적 특성)

  • Kim, Eun Min;Kim, Sung Chul;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.365-369
    • /
    • 2016
  • In this paper, we fabricated Cu/Mn alloy shunt resistor with low resistance and thermal stability for use of mobile electronic devices. We designed metal alloy composed of copper (Cu) and manganese (Mn) to embody in low resistance and low TCR which are conflict each other. Cu allows high electrical conductivity and Mn serves thermal stability in this Cu/Mn alloy system. We confirmed the elemental composition of the designed metal alloy system by using energy dispersive X-ray (EDX) analysis. We obtained low resistance below $10m{\Omega}$ and low temperature coefficient of resistance (TCR) below $100ppm/^{\circ}C$ from the designed Cu/Mn alloy resistor. And in order to minimize resistance change caused by alternative frequency on circuit, shape design of the metal alloy wire is performed by rolling process. Finally, we conclude that design of the metal alloy system was successfully done by alloying Cu and 3 wt% of Mn, and the Cu/Mn alloy resistor has low resistance and thermal stability.

Toxic Trace and Earth Crustal Elements of Ambient PM2.5 Using CCT-ICP-MS in an Urban Area of Korea

  • Lee, Jin-Hong;Jeong, Jin-Hee;Lim, Joung-Myung
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.3-8
    • /
    • 2013
  • Collision cell technology-inductively coupled plasma-mass spectrometry (CCT-ICP-MS) was used to measure the concentrations of approximately 19 elements associated with airborne PM2.5 samples that were collected from a roadside sampling station in Daejeon, Korea. Standard reference material (SRM 2783, air particulate on filter media) of the National Institute of Standards and Technology was used for the quality assurance of CCT-ICP-MS. The elemental concentrations were compared statistically with the certified (or recommended) values. The patterns of distribution were clearly distinguished between elements with their concentrations ranging over four orders of magnitude. If compared in terms of enrichment factors, it was found that toxic trace elements (e.g., Sb, Se, Cd, As, Zn, Pb, and Cu) of anthropogenic origin are much more enriched in PM2.5 samples of the study site. To the contrary, the results of the correlation analysis showed that PM2.5 concentrations can exhibit more enhanced correlations with the elements (e.g., Fe, K, Si, and Ti) arising from earth's crust. The findings of strong correlations between PM2.5 and the elements of crustal origin may be directly comparable with the dominant role of those species by constituting a major fraction of even PM2.5 as well as PM10 at the roadside area.

Synthesis and Antitumor Activity of Phthalimide-Based Polymers Containing Camptothecin

  • Lee, Neung-Ju
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 2003
  • The objective of this study was to develop a polymeric drug delivery system for camptothecin (CPT), capable of improving its therapeutic index and reducing its side effects. A monomeric conjugate, 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidoethanoylcamptothecin in (ETECPT) between CPT and 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidoethanoic acid was synthesized. Its homo-and copolymer with acrylic acid (AA) were prepared by photopolymerization using 2,2-dimethoxy-2-phenylacetophenone (DMP) as a photoinitiator. The monomer and its polymers were characterized by IR, $^1$H- and $^{13}$ C-NMR spectra. The ETECPT content in poly(ETECPT-co-AA) obtained by elemental analysis was 82 wt%. The number-average molecular weights of the polymers determined by gel permeation chromatography were as follows: M$_{n}$ = 11,400 for poly(ETECPT), M$_{n}$ = 17,900 for poly(ETECPT-co-AA). The $IC_{50}$/ values of ETECPT and its polymers against cancer cells were much larger than that of CPT. Our results from the in vivo antitumor activity indicated that all polymers show high antitumor activity than CPT at a dose of 100 mg/kg./kg.

High-temperature interaction of oxygen-preloaded Zr1Nb alloy with nitrogen

  • Steinbruck, Martin;Prestel, Stefen;Gerhards, Uta
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • Potential air ingress scenarios during accidents in nuclear reactors or spent fuel pools have raised the question of the influence of air, especially of nitrogen, on the oxidation of zirconium alloys, which are used as fuel cladding tubes and other structure materials. In this context, the reaction of zirconium with nitrogen-containing atmospheres and the formation of zirconium nitride play an important role in understanding the oxidation mechanism. This article presents the results of analysis of the interaction of the oxygen-preloaded niobium-bearing alloy $M5^{(R)}$ with nitrogen over a wide range of temperatures ($800-1400^{\circ}C$) and oxygen contents in the metal alloy (1-7 wt.%). A strongly increasing nitriding rate with rising oxygen content in the metal was found. The highest reaction rates were measured for the saturated ${\alpha}-Zr(O)$, as it exists at the metal-oxide interface, at $1300^{\circ}C$. The temperature maximum of the reaction rate was approximately 100 K higher than for Zircaloy-4, already investigated in a previous study. The article presents results of thermogravimetric experiments as well as posttest examinations by optical microscopy, scanning electron microscopy (SEM), and microprobe elemental analyses. Furthermore, a comparison with results obtained with Zircaloy-4 will be made.

Elemental analysis of the liver, kidney, and intestine tissues from a Hodgson's bat (Myotis formosus tsuensis)

  • Yu, Hee Jeong;Kang, Jung-Hoon;Lee, Seungwoo;Choi, Yu Jung;Oh, Dayoung;Lim, Jong-Deock;Ryu, Doug-Young
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.1
    • /
    • pp.51-52
    • /
    • 2016
  • Hodgson's bats are critically endangered in South Korea. This study analyzed the concentrations of elements in liver, kidney, and intestine tissues from a Hodgson's bat found dead in the wild. The concentrations of essential elements followed the order Fe > Zn > Cu > Mn > Se in the three tissues. Hg was detected at the highest concentrations among the non-essential elements analyzed in the liver and kidney tissues, while As was the most highly concentrated non-essential element in the intestine. To the best of our knowledge, this is the first study of tissue element concentrations in Hodgson's bats.