• Title/Summary/Keyword: element reduction

Search Result 1,831, Processing Time 0.023 seconds

Analysis of Free Vibration and Damping Characteristics of a Composite Plate by Using Modified 3-Dimensional 16-Node Elements (수정된 3차원 16절점 요소에 의한 복합재 판의 자유진동 및 감쇠특성 해석)

  • 윤태혁;김상엽;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.990-1004
    • /
    • 1995
  • A modified 16-node element for composite plate has been proposed and compared with the 20-node element to check the validity of it. The fields of numerical inspection include mode analysis and specific damping analysis. By symetrizing the conventional unsymmetric damping matrix in the analysis of specific damping capacity, we could compute the specific damping capacity and make a program, effectively. In addition, we could predict the errors caused by reduction of integration order in thickness direction depending upon the number of layers.

A Dynamic-explicit Finite Element Analysis for Hydro-forming Process (Hydro-forming 공정을 위한 동적-외연적 유한요소해석)

  • Jung, D.W.;Hwang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of Hydro-forming processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Hydro-forming process for auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the Hydro-forming processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

Finite Element Analysis for Satellite Antenna Structures Subject to Forced Sinusoidal Vibration (위성 안테나 구조물의 정현파 강제 진동에 대한 유한 요소 해석)

  • Shin, Won-Ho;Oh, Il-Kon;Han, Jae-Hung;Oh, Se-Hee;Lee, In;Kim, Chun-Gon;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.13-18
    • /
    • 2001
  • This paper deals with finite element analysis for free vibration and forced sine vibration of Ka- and Ku- bend antenna structures using MSC/PATRAN/NASTRAN. The structures are designed to satisfy minimum resonance frequency requirement in order to decouple the dynamic interaction of the satellite with the spacecraft bus structure. From the forced sinusoidal vibration, we have observed output acceleration versus input in X-,Y- and Z- direction, based on base excitation using large mass method. The results of finite elements analysis can be used as the reference data for the experimental test of satellite antenna, resulting in the reduction of cost and time by predicting and complementing experimental data.

  • PDF

Finite Element Analysis on the Strength Safety of a Hybrid Alarm Valve (복합알람밸브의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.221-224
    • /
    • 2012
  • This paper presents the strength safety of a hybrid alarm valve by a finite element analysis. The stress and strain of a conventional hybrid alarm valve are calculated for the given maximum test pressure of 2MPa. Especially, the FEM computed maximum stress of a conventional hybrid valve is only 18.6% of yield strength, 370MPa. This means that the conventional valve is designed with a thick thickness of a valve structure. But, new hybrid alarm valve model, which is developed by optimized design method in this study, shows more low level of 43% in maximum stress and strain compared with that of a conventional hybrid valve. These results may recommend the reduction of a weight and a dimension for an optimized hybrid alarm valve.

Study of Analyzing Roof Panel Using Static Implicit Finite Element Method (정적-내연적 유한요소법을 이용한 Roof 판넬 해석에 관한 연구)

  • Ahn Hyun-Gil;Jung Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.78-85
    • /
    • 2005
  • The static implicit finite element method is applied effectively to analyze total roof panel stamping processes, which include the forming stage. complicated and abnormal Large size roof panel was analyzed by using commercial program called AutoForm. Analysis results examining possibility and validity of the AutoForm software and the factor study are presented. Further, the simulated results for the total roof panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (II) : SEDIMENT TRANSPORT STUDY

  • Noh, Joon-Woon
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.99-109
    • /
    • 2003
  • Since bed elevation changes are mainly dependent on the flow velocity and corresponding shear stress, it is possible to predict bed elevation numerically using velocity components. For the scour analysis due to channel contraction, a bed load transport model is developed and applied to estimate scour depth around coffer dam in the Mississippi River. During Phase I of the Lock & Dam No. 26 replacement project, a coffer dam was constructed to reduce the flow area approximately by 50%. Flow velocity increases due to the flow area reduction yields significant lowering (erosion) of the channel bed elevation. The proposed numerical model solves the sediment continuity equation using the finite element method to evaluate scour process in the vicinity of the coffer dam

  • PDF

Strength Optimization of Ventilating Container(II)-Finite Element Analysis (통기성 상자 구조물의 강도적 최적화 연구(II)-유한요소해석)

  • Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.2
    • /
    • pp.25-30
    • /
    • 2001
  • Corrugated board is composed of cellulose fibers which are arranged with the same direction as the board manufactured. The direction is classified with machine direction (MD) and cross-machine direction (CD). Therefore, corrugated board is orthotropic material that has totally different strength properties at each direction and especially, at machine direction, the mechanical properties of fiberboard is superior. The compression strength of the corrugated fiberboard boxes is very important information to the manufacturers and the end users. This study was carried out to design the optimum pattern, size, and location of ventilating hole for ventilating container through the finite element analysis. The optimum pattern and location of ventilating and hand hole were vertical oblong, a short distance to the right and left from the center of panel, and center or a short distance to the top of both sides, respectively. We identified the effect on both stress dispersion and stress level from the analysis of redisigned hand hole.

  • PDF

Deformation Induced Anisotropy in Profile Extrusion of Aluminium Alloys (알루미늄 압출공정에서의 변형이방성에 대한 연구)

  • Lee C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.37-41
    • /
    • 2000
  • Extruded Profiles of Aluminum alloys have been widely used as parts and frames in mechanical and construction structures. Nowadays, mechanical processing of extruded Al alloy profiles is often employed for various industrial applications. Especially, the bending process is more and more applied and the process is greatly influenced by the distributed mechanical properties in the extruded profiles. Due to large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropy properties play a great role in the bending process, as a post processing of extruded profiles and errors will be involved when the extruded profiles are treated as isotropic material, ignoring the induced anisotropy in the thin-walled extruded product. In the present work, the anisotropic material change is simulated, as a simplified method, employing Barlats six-component yield criterion in the rigid-plastic finite element method. Finite element computations are carried out for extrusion of a thin-walled part.

  • PDF

Application of the Backward Tracing Scheme of Finite Element Method to Tailored Blank Design and Welding Line Movement in Sheet Metal Forming (두께가 다른 두 용접판재 성형에 있어서 블랭크 설계 및 용접선 이동에 대한 유한요소법의 역추적기법 적용)

  • 구태완;최한호;강범수
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.453-462
    • /
    • 2000
  • Tailor-welded blanks are used for forming of automobile structural skin components. The main objective of this study is to achieve weight and cost reduction in manufacturing of components. For successful application of tailor-welded blanks, design of initial welded blanks and prediction of the welding line movement are critical. The utilization of the backward tracing scheme of the finite element method shows to be desirable in design of initial welded blanks for net-shape production and in prediction of the welding line movement. First the design of the initial blank in forming of welded thick sheet with isotropy is tried, and it appears successful in obtaining a net-shape stamping product. Based on the first trial approach, the backward tracing scheme is applied to anisotropic tailored blanks. The welding line movement is also discussed.

  • PDF

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소 해석)

  • Hwang, Jae-Ho;Go, Dae-Cheol;Min, Gyu-Sik;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.364-374
    • /
    • 1998
  • It is the objective of this study to analyze the effect of various process variables on the quality of extruded product and extrusion force for semi-solid extrusion of Al2024 with solid phase structure of globular type by the finite element method. Process variables are initial solid fraction, ram speed, semi-angle of die, and reduction in area. The results of experiment are compared with those of simulation in order to verify the usefulness of the developed finite element program. The flow and deformation of semi-solid alloy are analyzed by coupling by coupling the deformation of porous skeleton and the flow of liquid phase. It is also assumed that initial solid fraction is homogeneous.

  • PDF