• Title/Summary/Keyword: element ratio

Search Result 2,821, Processing Time 0.04 seconds

Numerical study of internally reinforced circular CFT column-to-foundation connection according to design variables

  • Kim, Hee-Ju;Ham, Junsu;Park, Ki-Tae;Hwang, Won-Sup
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.445-452
    • /
    • 2017
  • This study intends to improve the structural details of the anchors in the conventional CFT column-to-foundation connection. To that goal, finite element analysis is conducted with various design variables (number and embedded length of deformed bars, number, aspect ratio, height ratio and thickness ratio of ribs) selected based upon the results of loading test and strength evaluation. The finite element analysis is performed using ABAQUS and the analytical results are validated by comparison with the load-displacement curves obtained through loading test applying axial and transverse loads. The behavioral characteristics of the numerical model according to the selected design variables are verified and the corresponding results are evaluated.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs (재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

An analysis of examination items for secondary Home Economics teaching certification - Focusing on evaluation content elements of Home Economics - (중등 "가정" 교사 임용시험 문항 분석 - 평가 영역별 평가 내용 요소를 기준으로 -)

  • Jung, Sang-Hee;Park, Mi-Jeong;Chae, Jung-Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.24 no.2
    • /
    • pp.135-154
    • /
    • 2012
  • The purpose of this study was to investigate the trends of HE exam questions through analyzing the examination items for secondary Home Economics(HE) teaching certification from 2002 to 2011. The results of the study were as follows: First, regarding the analysis on pedagogy of HE course, it accounted for 30.9% of the total questions, and recently, it increased to 35%. Regarding the ratio of questions by each evaluation element, 'practice of teaching and learning methods for HE course'(33.2%) had the highest ratio, and 'essence of the education of HE'(3.2%) had the lowest ratio. Second, regarding the analysis on eating habits, it amounted to 17.5% of the total questions, and recently reached 15%. With regard to the ratio of each evaluation element, 'cooking theory and practice'(26.1%) had the highest ratio, and 'culture of eating habits'(3.7%) had the lowest ratio. Third, regarding the analysis on clothing habits, it accounted 15% of the total questions, and recently reached 12.5%. With regard to the ratio of each evaluation element, 'clothing management'(25.1%) and 'production of clothing and living necessaries'(25.1%) had the highest ratio, and 'selection of clothing and self-expression'(3.0%) had the lowest ratio. Fourth, regarding the analysis on housing life, it accounted for 11% of the total questions, and recently reaches 12.5%. With regard to each evaluation element, 'the understanding of housing life culture'(22.5%) had the highest ratio, and 'the understanding of housing interior design'(10.7%) had the lowest ratio. Fifth, regarding the analysis on daily life as a consumer, it accounted for 12.4%, and recently reaches 12.5%. With regard to the ratio of each evaluation element 'management of domestic resources'(34%) had the highest ratio, and 'planning of entire life and domestic welfare'(0%) had the zero ratio. Sixth, regarding the analysis on family life, it accounted for 13.3% of the total questions, and recently reaches 12.5%. With regard to the ratio of each evaluation element, 'the understanding of family and the changes in family'(23.8%) had the highest ratio, and 'marriage and the development of family'(2%) had the lowest ratio.

  • PDF

Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns

  • Dong, Jing;Ma, Hui;Zou, Changming;Liu, Yunhe;Huang, Chen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • This paper presents a finite element model which can simulate the axial compression behavior of steel reinforced recycled concrete (SRRC) filled square steel tube columns using the ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of material in the columns. The nonlinear analysis of failure modes, deformation characteristics, stress nephogram, and load-strain curves of columns under axial loads was performed in detail. Meanwhile, the influences of recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, width thickness ratio of square steel tube, RAC strength and slenderness ratio on the axial compression behavior of columns were also analyzed carefully. It shows that the results of finite element analysis are in good agreement with the experimental results, which verifies the validity of the analytical model. The axial bearing capacity of columns decreased with the increase of RCA replacement percentage. While the increase of wall thickness of square steel tube, profile steel ratio and RAC strength were all beneficial to improve the bearing capacity of columns. Additionally, the parameter analysis of finite element analysis on the columns was also carried out by using the above numerical model. In general, the SRRC filled square steel tube columns have high bearing capacity and good deformation ability. On the basis of the above analysis, a modified formula based on the American ANSI/AISC 360-10 was proposed to calculate the nominal axial bearing capacity of the columns under axial loads. The research conclusions can provide some references for the engineering application of this kind of columns.

Vibration Analysis of Tapered Thick Plate with Concentrated Mass Subjected to In-plane Force on Elastic Foundation (탄성지반을 고려한 집중질량뜰 갖고 면내력이 작용하는 변단면 보강후판의 진동해석)

  • Lee, Yong-Soo;Kim, Il-Jung;Oh, Soog-Kyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1033-1041
    • /
    • 2008
  • The purpose of this paper is to investigate natural frequencies of tapered thick plate with concentrated masses subjected to in-plane force on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Finite element analysis of rectangular plate is done by using rectangular finite element with 8-nodes. For analysis, plates is supported on pasternak foundation. The Winkler parameter is varied with 10, 102, the shear foundation parameter is 5. The taper ratio is applied as 0.0, 0.25, 0.5 and the ratio of the concentrated mass to plate mass as 0.25, 0.5 respectively. As results, we can see that when stiffener's sizes or foundation parameter are larger, the natural frequency increases, and when the concentrated mass or taper ratio or in-plane stress is larger, the natural frequency decreases.

Finite Element Analysis of Nonlinear Behavior of a Column Type Sensing Element for Load Cell According to Design Parameters (기둥형 로드셀 감지부의 설계변수에 따른 비선형 거동해석)

  • Lee, Chun-Yeol;Gang, Dae-Im
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1540-1546
    • /
    • 2000
  • Recently, force measurement systems are commonly used in many industrial fields and the precision of the measurement system is getting more important as the industry needs more precise tools and in struments to make high quality products. However, a high precision force measurement system is hard to make unless we know precisely the causes, quality and quantity of measurement errors in advance. In this work, many possible mechanical causes of measurement errors are reviewed including ratio of length to diameter of sensing part, radius of contact area, radius of bearing part, ratio of material properties and change of boundary conditions. Also, the measurement errors are analyzed by nonlinear finite element method and the nonlinear behavior of the errors are investigated. The results can be used to design force measurement systems and expected to be very useful especially for compact type load cells.

Two Dimensional Finite Element Analysis on the Composite Ground Improved by Sand Compaction Piles with Low Area Replacement Ratio (저치환율 SCP 복합지반의 2차원 유한요소 해석기법 개발과 적용)

  • Shin, Hyun-Young;Han, Sang-Jae;Kim, Soo-Sam;Kim, Jae-Kwon;Sym, Sung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.394-401
    • /
    • 2006
  • This study developed two dimensional finite element program(FE-SCP) for the analysis of a composite ground reinforced by sand compaction piles with a low area replacement ratio based on the Mohr-Coulomb elastic perfectly plastic constitutive model. Program FE-SCP give some conveniences to users such as automatic mesh generation according to the replacement ratio and the effective sand pile diameter in the post processor. Also, it contains optimum processor in calculation of In-situ stress equilibrium considering different coefficient of earth pressure between sand pile and surrounding clay. Estimated stress-strain behavior using FE-SCP and the measured one from a centrifuge test showed good agreement comparing to the result from a general finite element program.

  • PDF

Modal analysis of FG sandwich doubly curved shell structure

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.721-733
    • /
    • 2018
  • The modal frequency responses of functionally graded (FG) sandwich doubly curved shell panels are investigated using a higher-order finite element formulation. The system of equations of the panel structure derived using Hamilton's principle for the evaluation of natural frequencies. The present shell panel model is discretised using the isoparametric Lagrangian element (nine nodes and nine degrees of freedom per node). An in-house MATLAB code is prepared using higher-order kinematics in association with the finite element scheme for the calculation of modal values. The stability of the opted numerical vibration frequency solutions for the various shell geometries i.e., single and doubly curved FG sandwich structure are proven via the convergence test. Further, close conformance of the finite element frequency solutions for the FG sandwich structures is found when compared with the published theoretical predictions (numerical, analytical and 3D elasticity solutions). Subsequently, appropriate numerical examples are solved pertaining to various design factors (curvature ratio, core-face thickness ratio, aspect ratio, support conditions, power-law index and sandwich symmetry type) those have the significant influence on the free vibration modal data of the FG sandwich curved structure.

Research on the optimization method for PGNAA system design based on Signal-to-Noise Ratio evaluation

  • Li, JiaTong;Jia, WenBao;Hei, DaQian;Yao, Zeen;Cheng, Can
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2221-2229
    • /
    • 2022
  • In this research, for improving the measurement performance of Prompt Gamma-ray Neutron Activation Analysis (PGNAA) set-up, a new optimization method for set-up design was proposed and investigated. At first, the calculation method for Signal-to-Noise Ratio (SNR) was proposed. Since the SNR could be calculated and quantified accurately, the SNR was chosen as the evaluation parameter in the new optimization method. For discussing the feasibility of the SNR optimization method, two kinds of PGNAA set-ups were designed in the MCNP code, based on the SNR optimization method and the previous signal optimization method, respectively. Meanwhile, the single element spectra analysis method was proposed, and the analysis effect of single element spectra as well as element sensitivity were used for comparing the measurement performance. Since the simulation results showed the better measurement performance of set-up designed by SNR optimization method, the experimental set-ups were built for the further testing, finally demonstrating the feasibility of the SNR optimization method for PGNAA setup design.