• Title/Summary/Keyword: element interaction

Search Result 1,547, Processing Time 0.034 seconds

Applications of General-Purpose Packages for Fluid-Structure Interaction Problems (범용 패키지의 결합을 통한 구조-유체 상호 작용 해석 기법)

  • 홍진숙;신구균
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.571-578
    • /
    • 1997
  • Recently, many general-purpose packages for fluid-structure interaction problems have been announced. However, they have a lot of limitations to model structures in the fluid-structure interaction problems reasonably. Utilizing general-purpose packages such as MSC/NASTRAN and SYSNOISE, in this paper, a method to slove the radiation scattering problems with some accuracy in the fluid-structure interaction problems was developed. Using a simple model, the results from the presented method here are compared with those from SYSNOISE. The result shows quite a good agreement between the two methods. The problems, which could not be solved by SYSNOISE, were tried to solve with the presented method and results were presented. It was proved that this method could be safely used to solve fluid-structure interaction problems.

  • PDF

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.

Nonlinear Seismic Response Analysis for Shallow Soft Soil Deposits (낮은 심도의 연약지반에 대한 비선형 지진응답해석)

  • Park, Hong-Gun;Kim, Dong-Kwan;Lee, Kyung-Koo;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.1-12
    • /
    • 2010
  • This study presents a finite element analysis method that can accurately evaluate the nonlinear behaviour of structures affected by shallow soft subsoils and the soil-structure interaction. A two-dimensional finite element model that consists of a structure and shallow soft subsoil was used. The finite element model was used for a nonlinear time domain analysis of the OpenSees program. A parametric study was performed to investigate the effects of soil shear velocities, earthquake input motions, soft soil depth, and soil-structure interaction. The result of the proposed nonlinear finite element analysis method was compared with the result of an existing frequency domain analysis method, which is frequently used for addressing nonlinear soil behavior. The result showed that the frequency domain analysis, which uses equivalent secant soil stiffness and does not address the soil-structure interaction, significantly overestimated the response of the structures with short dynamic periods. The effect of the soil-structure interaction on the response spectrum did not significantly vary with the foundation dimensions and structure mass.

Development and Applications of Infinite Elements for Dynamic Soil-Structure Interaction Analysis (동적 지반-구조물 상호작용해석을 위한 무한요소법의 개발 및 응용사례)

  • Yun, C.B.;Yang, S.C.;Kim, J.M.;Choi, J.S.;Kim, D.K.;Seo, C.G.;Chang, S.H.;Park, K.L.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.14-19
    • /
    • 2008
  • This paper presents dynamic infinite element formulations which have been developed for soil-structure interaction analysis both in frequency and in time domains by the present authors during the past twenty years. Axisymmetric, 2D and 3D layered half-space soil media were considered in the developments. The displacement shape functions of the infinite elements were established using approximate expressions of analytical solutions in frequency domain to represent the characteristics of multiple waves propagating into the unbounded outer domain of the media. The proposed infinite elements were verified using benchmark examples, which showed that the present formulations are very effective for the soil-structure interaction analysis either in frequency or in time domain. Example applications to actual interaction problems are also given to demonstrate the capability and versatility of the present methodology.

  • PDF

FINITE ELEMENT BASED FORMULATION OF THE LATTICE BOLTZMANN EQUATION

  • Jo, Jong-Chull;Roh, Kyung-Wan;Kwon, Young-W.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.649-654
    • /
    • 2009
  • The finite element based lattice Boltzmann method (FELBM) has been developed to model complex fluid domain shapes, which is essential for studying fluid-structure interaction problems in commercial nuclear power systems, for example. The present study addresses a new finite element formulation of the lattice Boltzmann equation using a general weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method, and method of moments are used for finite element based Lattice Boltzmann solutions. Different finite element geometries, such as triangular, quadrilateral, and general six-sided solids, were used in this work. Some examples using the FELBM are studied. The results were compared with both analytical and computational fluid dynamics solutions.

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

Numerical simulation of concrete abrasion induced by unbreakable ice floes

  • Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.

Energy Flow Finite Element Analysis for High Frequency Acoustic and Vibrational Prediction of Complicated Plate Structures Considering Fluid-Structure Interaction (복합평판구조물의 고주파수 대역 유체/구조 연성 소음진동예측을 위한 에너지흐름유한요소해석)

  • Tae-Heum Yoon;Young-Ho Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • In this paper, the Energy Flow Finite Element Analysis (EFFEA) was performed to predict the acoustic and vibrational responses of complicated plate structures considering improved Fluid-Structure Interaction (FSI). For this, a new power transfer relationship was derived at the area junction where two different fluids are in contact on both sides of the plate. In order to increase the reliability of EFFEA of complicated plate structures immersed in a high-density fluid, the corrected flexural wavenumber and group velocity considering fluid-loading effect were derived. As the specific acoustic impedance of the fluid in contact with the plate increases, the flexural wavenumber of the plate increases. As a result, the flexural group velocity is reduced, and the spatial damping effect of the flexural energy density is increased. Additionally, for the EFFEA of arbitary-shaped built-up structures, the energy flow finite element formulation for the acoustic tetrahedral element was newly performed. Finally, for validation of the derived theory and developed software, numerical applications of complicated plate structures submerged in seawater or air were successfully performed.

Acoustic Interface Element on Nonconformal Finite Element Mesh for Fluid-Structure Interaction Problem (비적합 유한요소망에 적용가능한 유체-구조물 연결 요소)

  • Cho, Jeong-Rae;Lee, Jin Ho;Cho, Keunhee;Yoon, Hyejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.163-170
    • /
    • 2023
  • In the fluid-structure interaction analysis, the finite element formulation is performed for the wave equation for dynamic fluid pressure, and the dynamic pressure is defined as a degree of freedom at the fluid nodes. Therefore, to connect the fluid to the structure, it is necessary to connect the degree of freedom of fluid dynamic pressure and the degree of freedom of structure displacement through an interface element derived from the relationship between dynamic pressure and displacement. The previously proposed fluid-structure interface elements use conformal finite element meshes in which the fluid and structure match. However, it is challenging to construct conformal meshes when complex models, such as water purification plants and wastewater treatment facilities, are models. Therefore, to increase modeling convenience, a method is required to model the fluid and structure domains by independent finite element meshes and then connect them. In this study, two fluid-structure interface elements, one based on constraints and the other based on the integration of nonsmooth functions, are proposed in nonconformal finite element meshes for structures and fluids, and their accuracy is verified.

Hydroelastic vibration analysis of wetted thin-walled structures by coupled FE-BE-Procedure

  • Rohr, Udo;Moller, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.101-118
    • /
    • 2001
  • The reliable prediction of elastic vibrations of wetted complex structures, as ships, tanks, offshore structures, propulsion components etc. represent a theoretical and numerical demanding task due to fluid-structure interaction. The paper presented is addressed to the vibration analysis by a combined FE-BE-procedure based on the added mass concept utilizing a direct boundary integral formulation of the potential fluid problem in interior and exterior domains. The discretization is realized by boundary element collocation method using conventional as well as infinite boundary element formulation with analytical integration scheme. Particular attention is devoted to modelling of interior problems with both several separate or communicating fluid domains as well as thin-walled structures wetted on both sides. To deal with this specific kind of interaction problems so-called "virtual" boundary elements in areas of cut outs are placed to satisfy the kinematical conditions in partial connected fluid domains existing in realistic tank systems. Numerical results of various theoretical and practical examples demonstrate the performance of the BE-methodology presented.