• Title/Summary/Keyword: electrostatic precipitator

Search Result 198, Processing Time 0.031 seconds

A Study on the Electrostatic Precipitation as a Function of Resistivity using various Indoor Dusts (실내 분진의 비저항 특성에 따른 전기집진 효율에 대한 연구)

  • Cheong, Seong-Ir;Choi, Young-Min;Ahn, Young-Chull;Lee, Jea-Keun;Kangk, Eun-Chull;Lee, Euy-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.448-453
    • /
    • 2006
  • Electrical resistivity is an important property for the collection efficiency in the electrostatic precipitator. In this paper, electrical resistivities of tobacco dusts, yellow sand dusts and pine pollens are measured using a high voltage conductivity cell based on JIS B 9915. The resistivities of three kinds of indoor dusts are about $1{\times}10^7\;{\Omega}{\cdot}cm^2$ in the normal range and dust collection efficiency using an electrostatic precipitator at to face velocity of 1.0 m/s shows over 99% for the three kinds of indoor dusts.

  • PDF

The Effect of Acoustic Energy on the Collection Efficiency of the Electrostatic Precipitator (음파에너지가 전기 집진기의 집진 효율에 미치는 영향)

  • 정상현;홍원석;김용진;심성훈
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.207-215
    • /
    • 2003
  • An experimental study on the characteristics of collection efficiency for electrostatic precipitator under the action of acoustic energy in the gas stream was performed. In the experiment, the acoustic energy which has 2 kHz and 141 dB was applied to electrostatic precipitator inlet, and the test parameters were used in terms of the magnitude of gas velocity. From the results of experiment, the collection efficiency of ESP was increased due to acoustic energy, and this effect was much clearer at high velocity. This means that the acoustic energy can play an important role in the enlargement of specific collection area of the electrostatic precipitator.

A Study on the Collection Characteristics of a Moving Electrode Electrostatic Precipitator - II. Effect of Wave Form of Pulse Energization and Dust Concentration - (이동 전극형 전기집진기의 집진특성에 관한 연구 - II. 펄스 하전 파형 및 분진농도의 영향 -)

  • Kim Yong-Jin;Ha Byung-Kil;Jeong Sang-Hyun;Hong Won-Seok;Yoo Joo-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.908-913
    • /
    • 2004
  • This study investigates the effect of the wave form of pulse energization and dust concentration on the collection characteristics of a moving electrode electrostatic precipitator (MEEP). Under the same specific corona power, the collection efficiency of the MEEP for the lower dust concentration ($2g/m^3$) becomes higher than that for the higher concentration ($10g/m^3$). Both the collection efficiency and specific corona power increase with increasing pulse period for the same value of applied voltage. The collection efficiency of MEEP is higher than that of the conventional fixed plate electrode electrostatic precipitator.

Numerical Study of Particle Collection Performance of Electrostatic Precipitator Integrated with Double Skin Façade in Residential Buildings (주거건물용 이중외피 통합형 전기집진기의 미세먼지 집진성능 수치해석 평가)

  • Eom, Ye Seul;Choi, Dong Hee;Kang, Dong Hwa
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.73-82
    • /
    • 2018
  • The objective of this study was to evaluate particle collection performance of electrostatic precipitator (ESP) integrated with double skin façade in naturally ventilated residential buildings using numerical method. To evaluate the efficiency, computational fluid dynamics (CFD) simulation based on electric potential and Lagrangian method was applied. The CFD model was validated by comparing the simulated results with the experimental data including thermal characteristic of double skin façade (DSF) and particle removal characteristic of electrostatic precipitator. The validation results showed that the root mean square error (RMSE) between predicted values and measured values of velocity and temperature in intermediate space of DSF was 1.2%. The adequacy of ion space charge density and turbulent model were determined. The RMSE between predicted values and measured values of collection efficiency of ESP was 9.2%. In addition, the case study was performed to present the application of the numerical method based on validation results of ESP integrated with façade.

Numerical Investigation on Capture of Sub-Micron particles in Electrostatic Precipitator without Corona Discharger (코로나 방전기가 없는 전기집진기의 미세입자 집진에 관한 수치해석)

  • Lee, Jin-Woon;Jang, Jae-Sung;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2011
  • This article presents computational fluid dynamics (CFD) simulations of sub-micron particle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program (CFD-ACE) including electrostatic theory and Lagrangian-based equation for sub-micron particle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in sub-micron particle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

Predicted Optimum Efficiency due to Changes in the Design Parameters of the Small Electrostatic Precipitator (설계인자 변화에 따른 소형 전기집진장치의 최적효율 예측)

  • Suh, Jeong-Min;Yi, Pyong-In;Jung, Moon-Sub;Park, Jeong-Ho;Lim, Woo-Taik;Park, Chool-Jae;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1187-1197
    • /
    • 2013
  • The result of a small electrostatic precipitator which is in order to decrease indoor air pollution for optimal efficiency was shown as follows. Although the closer distance between the discharge electrode and dust collecting electrode shows the better throughput efficiency by forming strong electrostatic Field, it does not have profound impact in case of optimal dust collecting area. G.P(gas passage) which is the distance from dust collecting electrode to dust collecting electrode is a crucial factor to decide dust collecting efficiency. The narrower distance of G.P shows the better throughput efficiency whereas it decreases when the distance is too narrow since sparks ensue by increasing the capacity of electrostatic charging system 5 mm regards as optimal efficiency in this experiment. Although the higher voltage shows the higher dust collecting efficiency overall, the experiment was not able to keep performing since the sparks which decrease dust collecting efficiency ensue over 40 kV. The efficient and safe voltage state is considered 3.6 kV in this experiment. The most crucial factor for dust collecting efficiency of an electrostatic precipitator which is in order to decrease indoor air pollution is applied voltage. In addition, optimal raw gas flow rate(2.4 m/sec) is more important factor than the excessive increase of dust collecting area.

Effects of the Block Distance of Collecting Plate and Particle Size on the particle Deposition Efficiency in the Two-Stage Electrostatic Precipitator (2단식 전기집진기의 집진판 블록간격 및 입자크기가 입자의 부착효율에 미치는 영향)

  • 박청연
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.165-178
    • /
    • 2000
  • In this study the effects of block distance have been investigated on the particle deposition efficiency in the collecting cell of two-stage electrostatic precipitator by numerical analysis. Particle trajectories have been changed by the electrostatic and inertial force of particle with the inlet velocity electrostatic number and particle diameter. The total deposition efficiency has a minimum value by the interaction between the effect of particle inertial force and electrostatic force in the collecting cell. The increase of block distance makes the total deposition efficiency decrease under the range of the particle size which has the minimum deposition efficiency. However beyond the range of particle size which has minimum deposition efficiency total deposition efficiency has no trend with the variation of block distance.

  • PDF

Collection Efficiency of Nano Particles by Electrostatic Precipitator using Dielectric Barrier Discharge (배리어 유전체 방전을 이용한 전기 집진부에서의 나노 입자 집진 효율)

  • Kang, Suk-Hoon;Ji, Jun-Ho;Byeon, Jeong-Hoon;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1542-1547
    • /
    • 2003
  • Although dielectric barrier discharge (DBD) in air has been applied to a wider range of aftertreatment processes for HAPs (Hazardous Air Pollutants), due to its high electron density and energy, its potential use as precharging dust particles is not well known. In this work, we measured size distributions of bimodal aerosol particles and estimated collection efficiency of the particles by an electrostatic precipitator (ESP) using DBD as particle charger. To examine the particle collection with DBD charger, nano size particles of NaCl(20∼100nm) and DOS (50∼500nm) were generated by a tube furnace and an atomizer, respectively. For experimental conditions of 60㎐, 11㎸ and 60 lpm, the particle collection efficiency for the hybrid system was over 85%, based on the number of particles captured.

A Study on Collection Efficiency of Compact and Small Size Air-Cleaning Electrostatic Precipitator (공기정화용 소형 전기집진장치의 집진효율에 관한 연구)

  • Lee, S.H.;Yum, M.O.;Kang, K.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.84-89
    • /
    • 1997
  • Recentely, a compact and small size air-cleaning Electrostatic Precipitator(ESP) is needed to develop for air conditioning devices. From Deutsch formula for ESP efficiency, collection efficiency is affected not only the structure of collection section but also the charge rate of dust. In terms of collection area, the most useful type is a scroll type ESP. In this work, we investigated experimentally aptimum design factor of scroll type ESP by application of Taguchi method. And we developed the scroll type ESP by using optimal condition of control factor.

  • PDF

Collection Efficiency of Electrostatic Precipitator using Moment Method (모멘트 방법을 이용한 전기집진기의 집진 효율)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.345-353
    • /
    • 2002
  • A study of polydispersed aerosol dynamics by Electrostatic Precipitator (ESP) was carried out. The log-normal particle size distribution was assumed and moment method was considered. In order to apply moment method in Deutsch-Anderson equation, Cunningham slip correction factor and Cochet's charge equation were simplified for certain range of particle size. The three parameters, which explain the particle size distribution, such as total number concentration, geometric mean diameter, and geometric standard deviation were considered to derive the analytic solution. The obtained solution was compared with available numerical results (Bai et al., 1995). The comparison of the numerical and analytic results showed a good agreement.