• 제목/요약/키워드: electrospun fibers

검색결과 116건 처리시간 0.021초

열매유형 용융전기방사장치를 이용한 폴리에틸렌 혼합물의 용융점도와 섬유직경의 상관관계 연구 (Effects of Melt-viscosity of Polyethylene Mixtures on the Electrospun-fiber Diameter Using a Oil-circulating Melt-electrospinning Device)

  • 양희성;김효선;나종성;서영수
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.518-524
    • /
    • 2014
  • 용융전기방사법은 유기용매를 사용하지 않아 용액전기방사법에 비하여 친환경 기술로 관심을 받고 있다. 그러나 용융전기방사법으로 제작된 섬유의 직경은 수 마이크론에서 수십 마이크론에 이르고 있어 그 응용성에 제한을 받고 있다. 본 연구에서는 자체 제작한 용융전기방사 장비를 사용하여 용융점도에 따른 방사섬유의 직경의 변화를 체계적으로 연구하였다. 장비가 허용하는 온도 범위에서 방사 가능한 용융점도를 갖도록 저밀도 폴리에틸렌에 폴리에틸렌모노알콜과 폴리에틸렌 왁스를 혼합하여 실험에 사용하였다. 이 고분자 혼합물들을 사용하여 용융점도의 변화에 따라 수 마이크론에서 수십 마이크론까지의 크기를 가진 고른 표면의 섬유를 제조할 수 있었다. 또한 산화된 폴리에틸렌 왁스를 혼합물에 사용하여 고분자의 극성에 따른 직경의 변화를 관찰하였다. 부가적으로 인가 전압과 방사 거리 등이 방사섬유의 직경에 미치는 영향을 조사하였다.

전기방사를 이용한 리그닌 나노섬유의 제조 (Fabrication of Lignin Nanofibers Using Electrospinning)

  • 이은실;이승신
    • 한국의류학회지
    • /
    • 제38권3호
    • /
    • pp.372-385
    • /
    • 2014
  • Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

Mechanical Behaviors and Characterization of Electrospun Polysulfone/Polyurethane Blend Nonwovens

  • Cha Dong-Il;Kim Kwan-Woo;Chu Gong-Hee;Kim Hak-Yong;Lee Keun-Hyung;Bhattarai Narayan
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.331-337
    • /
    • 2006
  • In the present study we investigated the relationship between the morphology and mechanical properties of electrospun polysulfone (PSF)/polyurethane (PU) blend nonwovens, by using the electrospinning process to prepare three types of electrospun nonwovens: PSF, PU and PSF/PU blends. The viscosity, conductivity and surface tension of the polymer solutions, were measured by rheometer, electrical conductivity meter and tensiometer, respectively. The electrospun PSF/PU blend nonwovens were characterized by scanning electron microscopy (SEM) and with a universal testing machine. The SEM results revealed that the electrospun PSF nonwoven had a structure consisting of cross-bonding between fibers, whereas the electrospun PU nonwoven showed a typical, point-bonding structure. In the electrospun PSF/PU blend nonwovens, the exact nature of the point-bonding structure depended on the PU contents. The mechanical properties of the electrospun PSF/PU blend nonwoven were affected by the structure or the morphology. With increasing PU content, the mechanical behaviors, such as Young's modulus, yield stress, tensile strength and strain, of the electrospun PSF/PU blend nonwovens were by up to 80%.

Biomimetic Electrospun Fibers for Tissue Engineering Applications

  • 신흥수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.2.2-2.2
    • /
    • 2011
  • The central strategy in tissue engineering involves a biomaterial scaffold as a delivery carrier of cells and a depot to deliver bioactive molecules. The ability of scaffolds to control cellular response to direct particular repair and regeneration processes is essential to obtain functional tissue engineering constructs. Therefore, many efforts have been made to understand local interactions of cells with their extracellular matrix (ECM) microenvironment and exploit these interactions for designing an ideal scaffold mimicking the chemical, physiological, and structural features of native ECM. ECM is composed of a number of biomacromolecules including proteins, glycosaminoglycans, and proteoglycans, which are assembled together to form complex 3-dimensional network. Electrospinning is a process to generate highly porous 3-dimensional fibrous structure with nano to micro scaled-diameter, which can closely mimic the structure of ECM. In this presentation, our approaches to develop biomimetic electrospun fibers for modulation of cell function will be discussed.

  • PDF

Characterization of degree of alignment of polymer microfibers electrospun on a rotating water collector

  • Li, Shichen;Lee, Bong-Kee
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.125-130
    • /
    • 2021
  • In this study, the degree of alignment of polymer microfibers produced by electrospinning using a rotating water collector was evaluated. Aligned micro- and nano-fibers are required in various practical applications involving anisotropic properties. The degree of fiber alignment has many significant effects; hence, and accurate quantitative analysis of fiber alignment is necessary. Therefore, this study developed a simple and efficient method based on two-dimensional fast Fourier transform, followed by ellipse fitting. As a demonstrative example, the polymer microfibers were electrospun on the rotating water collector as the alignment of microfibers can be easily controlled. The analysis shows that the flow velocity of the liquid collector significantly affects the electrospun microfiber alignment, that is, the higher the flow velocity of the liquid collector, the greater is the degree of microfiber alignment. This method can be used for analyzing the fiber alignment in various fields such as smart sensors, fibers, composites, and textile engineering.

공축 전기방사를 이용한 Core-Sheath형 복합나노섬유의 제조 (Fabrication of Core-Sheath Nanocomposite Fibers by Co-axial Electrospinning)

  • 강민정;이승신
    • 한국의류학회지
    • /
    • 제37권2호
    • /
    • pp.224-234
    • /
    • 2013
  • This study investigates the fabrication of core-sheath nanocomposite fibers by locating germanium (Ge) and silicon dioxide ($SiO_2$) nanoparticles selectively in the sheath layer by co-axial electrospinning. Co-axially spun fibers were prepared by electrospinning a pure PVA solution and Ge/$SiO_2$/PVA solution as the core and sheath layer, respectively. Core-sheath nanocomposite fibers were electrospun under a variety of conditions that include various feed rates for the core and sheath solutions, voltages, and concentric needle diameters, in order to find an optimum spinning condition. Ge/$SiO_2$ nanocomposite fibers were also prepared by uniaxial electrospinning to compare fiber morphology and nanoparticle distribution with core-sheath nanofibers. Using scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray analysis, it was demonstrated that the co-axial approach resulted in the presence of nanoparticles near the surface region of the fibers compared to the overall distribution obtained for uni-axial fibers. The co-axially electrospun Ge/$SiO_2$/PVA nanofiber webs have possible uses in high efficiency functional textiles in which the nanoparticles located in the sheath region provide enhanced functionality.

ZnO와 TiO2 함유 복합나노섬유의 제조와 유해물질분해 성능 평가 (Fabrication of ZnO and TiO2 Nanocomposite Fibers and Their Photocatalytic Decomposition of Harmful Gases)

  • 허윤선;이승신
    • 한국의류학회지
    • /
    • 제35권11호
    • /
    • pp.1297-1308
    • /
    • 2011
  • This research investigates the application of ZnO (zinc oxide) nanoparticles and $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via an electrospinning technique for the development of textile materials that can decompose harmful gases. To fabricate uniform ZnO nanocomposite fibers, two types of ZnO nanoparticles were applied. Colloidal $TiO_2$ nanoparticles were chosen to fabricate $TiO_2$ nano- composite fibers. ZnO/poly(vinyl alcohol) (PVA) and $TiO_2$/PVA nanocomposite fibers were electrospun under a variety of conditions that include various feed rates, electric voltages, and capillary diameters. The morphology of electrospun nanocomposite fibers was examined with a field-emission scanning electron micro- scope and a transmission electron microscope. Decomposition efficiency of gaseous materials (formaldehyde, ammonia, toluene, benzene, nitrogen dioxide, sulfur dioxide) by nanocomposite fiber webs with 3wt% nano-particles (ZnO or $TiO_2$) and 7$g/m^2$ web area density was assessed. This study shows that ZnO nanoparticles in colloid were more suitable for fabricating nanocomposite fibers in which nanoparticles are evenly dispersed than in powder. A heat treatment was applied to water-soluble PVA nanofiber webs in order to stabilize the electrospun nanocomposite fibrous structure against dissolution in water. ZnO/PVA and $TiO_2$/PVA nanofiber webs exhibited a range of degradation efficiency for different types of gases. For nitrogen dioxide, the degradation efficiency was 92.2% for ZnO nanocomposite fiber web and 87% for $TiO_2$ nanocomposite fiber web after 20 hours of UV light irradiation. The results indicate that ZnO/PVA and $TiO_2$/PVA nano- composite fiber webs have possible uses in functional textiles that can decompose harmful gases.

Improved Sensitivity of an NO Gas Sensor by Chemical Activation of Electrospun Carbon Fibers

  • Kang, Seok-Chang;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • 제12권1호
    • /
    • pp.21-25
    • /
    • 2011
  • A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.

전기방사법을 이용한 산화티탄 나노섬유의 제조 (Fabrication of Electrospun Titania Nanofiber)

  • 박수일;이득용;이명현;이세종;김배연
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.548-553
    • /
    • 2005
  • $TiO_2$ nanofibers were fabricated by annealing electrospun $TiO_2$/PVP nanofibers for 3 h at $500^{\circ}C$ in air. Size and uniformity of electrospun $TiO_2$ nanofiber diameters were evaluated via XRD and SEM by varying electric field, PVP concentration, Ti tetraisopropoxide concentration and precursor flow rate. Experimental results revealed that the effect of PVP concentration on size and uniformity of electrospun $TiO_2$ nanofiber diameters was most profound, however, the other effects were relatively small. Uniform fibers with no beads were observed for the electrospun anatase titania nanofibers with a diameter of 170 nm.

배향된 셀룰로오스에 기초한 Electro-Active Paper의 성능평가 (Performance Evaluation of Electro-Active Paper Based on Aligned Cellulose)

  • 윤규영;김정환;김흥수;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.934-937
    • /
    • 2007
  • This study focused on investigating the effect of aligned cellulose fibers to the performance of EAPap actuator. The performance of EAPap is dependant on the material direction of cellulose film. Electrospinning was used to improve material directionality of EAPap. DMAc cellulose solution which cotton pulp was resolved in DMAc solvent was used for electrospinning cellulose film. To increase directionality of nano fibers, the Electrospun film was stretched by 10 % strain during drying process. Induced in-plane strain of Electrospun EAPap was proportional to the applied voltage and larger than that of spincast EAPap. It is concluded that the performance of EAPap was improved by aligning cellulose fibers.

  • PDF