• Title/Summary/Keyword: electronic control unit

Search Result 458, Processing Time 0.027 seconds

ICT Fusion Type Plasma Waste Heat Ventilation System for Improvement of Indoor Air Quality (실내 공기질 개선을 위한 ICT 융복합형 플라즈마 폐열 환기 시스템)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1215-1220
    • /
    • 2019
  • Currently, each farm bears both the outbreak of foot-and-mouth disease and the damage caused by AI. In addition, complaints about odors in the livestock industry are constantly being recovered and are expected to occur in the future. The purpose of this study is to improve the indoor air quality of enclosed facilities such as barns, houses, pigsty, and etc. This paper develops low-temperature plasma waste heat ventilation system to be installed in ventilation unit location and standardizes heat exchange element, low-temperature plasma lamp, and ballast for enhanced air cleaning function. In addition, this study intends to develop a new control system so that the farmers can connect with existing weather systems, flow fans, and other facility equipment by incorporating ICT.

Design and Development of Underwater Drone for Fish Farm Growth Environment Management (양식장 생육 환경관리를 위한 수중 드론 설계 및 개발)

  • Yoo, Seung-Hyeok;Ju, Yeong-Tae;Kim, Jong-Sil;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.959-966
    • /
    • 2020
  • With the growing importance of the fishery industry and the rapid growth of the aquaculture industry, research on smart farms through ICT convergence in the aquaculture field is in progress. To enable monitoring of the growing environment at the farm site, an underwater drone drive unit, an image collection device, an integrated controller for posture stabilization, and a remote control device capable of controlling and controlling drones through real-time underwater images were proposed, and design, development, and tests were conducted. By utilizing underwater drones, it is possible to replace the supply and demand of manpower and high-cost work in the aquaculture industry, and to manage fish farms in a stable manner by reducing the probability of farming deaths.

A Development of Improved Recognition Algorithm for Ultrasonic Signal (수중 음향신호 인식성능 향상 알고리듬 개발)

  • Kim Young-Jin;Huh Kyung-Moo;Woo Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.60-66
    • /
    • 2006
  • Underwater ultrasonic communication is critical to explore and development ocean using instrument. Essential to these applications is the reliable teleoperation and telemetering of the unit. But the problem is that the controllability of the instrument and the reliability of submarine communication are decreased, as so various passive noises are generated. In the existing methods, the control informations, received from an observation instrument, are identified used by hardware and repeatedly compared with standard information. However, such a method weakens the efficiency in controllability-centered systems. This study presents an ultrasonic signal detection algorithm that can identify the ultrasonic signal without the influence of disturbances due to underwater environmental changes. Likewise, the logicality of detection algorithm were ascertained by simulation.

A Design of Transceiver Module for Wire and Wireless Robust Security System (로버스트 유무선 보안시스템을 위한 송수신 모듈의 설계)

  • Park, Sung Geoul;Lee, Jae Min
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • In this paper, a design of transceiver module for real-time wire and wireless robust integrated security system to solve the problem of conventional security system and its transceiver module is proposed. The presented robust integrated security system is designed with RF control unit and wireless transceiver module. A RF controller in transceiver module works as a low-power RF transceiver system. It is designed to use specific bandwidth stored in registers and manipulate RF power of transceiver by accessing the random values of registers. Operation algorithm for RF transceiver module is also presented. The designed transceiver module and the operation algorithm are implemented and verified by experiments.

The effect of 3mW 850nm Laser Diode on RAT BM-cell (3mW 850nm Laser Diode가 Rat BM-Cell에 미치는 효과)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.514-515
    • /
    • 2008
  • Low level laser therapy has various therapy effects. This paper performed the basic study for developing the Low Level Laser Therapy Equipment for medical treatment. The apparatus has been fabricated using the laser diode and microprocessor unit. This equipment was fabricated using a micro-controller and a laser diode, and designed to enable us to control light time, frequency and so on. In this study, the designed device was used irradiation to find out how 850 nm laser diode affected the cell proliferation of RAT bone-marrow cells. Experiment was performed to irradiation group and non-irradiation group for Rat bone marrow cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro plate reader. As a result, the cell increase of Rat bone marrow cells was verified in irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

  • PDF

Complete and Incomplete Observability Analysis by Optimal PMU Placement Techniques of a Network

  • Krishna, K. Bala;Rosalina, K. Mercy;Ramaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1814-1820
    • /
    • 2018
  • State estimation of power systems has become vital in recent days of power operation and control. SCADA and EMS are intended for the state estimation and to communicate and monitor the systems which are operated at specified time. Although various methods are used we can achieve the better results by using PMU technique. On placing the PMU, operating time is reduced and making the performance reliable. In this paper, PMU placement is done in two ways. Those are 'optimal technique with pruning operation' and 'depth of unobservability' considering incomplete and complete observability of a network. By Depth of Unobservability Number of PMUs are reduced to attain Observability of the network. Proposed methods are tested on IEEE 14, 30, 57, SR-system and Sub systems (1, 2) with bus size of 270 and 444 buses. Along with achieving complete observability analysis, single PMU loss condition is also achieved.

RESISTANCE ESTIMATION OF A PWM-DRIVEN SOLENOID

  • Jung, H.G.;Hwang, J.Y.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.249-258
    • /
    • 2007
  • This paper proposes a method that can be used for the resistance estimation of a PWM (Pulse Width Modulation)-driven solenoid. By using estimated solenoid resistance, the PWM duty ratio was compensated to be proportional to the solenoid current. The proposed method was developed for use with EHB (Electro-Hydraulic Braking) systems, which are essential features of the regenerative braking system of many electric vehicles. Because the HU (Hydraulic Unit) of most EHB systems performs not only ABS/TCS/ESP (Electronic Stability Program) functions but also service braking function, the possible duration of continuous solenoid driving is so long that the generated heat can drastically change the level of solenoid resistance. The current model of the PWM-driven solenoid is further developed in this paper; from this a new resistance equation is derived. This resistance equation is solved by using an iterative method known as the FPT (fixed point theorem). Furthermore, by taking the average of the resistance estimates, it was possible to successfully eliminate the effect of measurement noise factors. Simulation results showed that the proposed method contained a sufficient pass-band in the frequency response. Experimental results also showed that adaptive solenoid driving which incorporates resistance estimations is able to maintain a linear relationship between the PWM duty ratio and the solenoid current in spite of a wide variety of ambient temperatures and continuous driving.

Development of NCS-Based Technical Education Program for Analog Signal Processing (아날로그 신호처리를 위한 NCS 기반 기술교육 프로그램 개발)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.510-514
    • /
    • 2020
  • Vocational education needs to be transformed to cultivate talents with diverse fusion competencies, which is in line with the recent changes that have become a part of the complex technological developments in the 4th Industrial Revolution. Therefore, it is very important for college graduates to obtain employment skills as they are required to prepare for careers within the complex environments of future societies. With the transition to the Internet of Things (IoT)-based control in the manufacturing industry, the development of technological education and related training programs is required to cultivate practical talents for students who have acquired not only the information on existing programmable logic controller (PLC)-based technology, but also that on embedded programming technology. Therefore, to develop an NCS-based education program for analog signal processing to ensure that programming can easily be learned for cultivating practical talent, this study summarizes the opinions of field experts, selects the appropriate NCS competency unit, and designs an adequate technology education training program.

Analysis and Modelling of Dynamically Variable Topology of Low Earth Orbit Satellite Networks (저궤도 위성 네트워크의 동적 토폴로지 해석 및 모델링)

  • Vazhenin, N.A.;Ka, Min-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.155-162
    • /
    • 2004
  • Recently, significant interest is shown to creation rather inexpensive global systems communications on base of Low-Earth-Orbit Satellite Networks (LEOSN). One of problems of design and creation LEOSN is development of the stream control methods and estimation it's efficiency in such networks. The given problem is complicated, that the topology of the satellite networks varies in time. It essentially hinders the analytical decision of the given problem. An effective way of overcoming of these difficulties is simulation modeling. For realization of research experiments on learning the information streams routing algorithms in LEOSN a special program complex SANET was developed. In the given paper principles of development of LEOSN simulation models and architecture of the manager by the process of a simulation modeling of the unit are considered. Methods of promotion of modeling time and architecture of a simulator complex offered in the article allow to boost essentially efficiency of simulation analysis and to ensure simulation modeling of the satellite networks consisting of several hundreds space vehicles.

  • PDF

Simulation Study for a UV Water Disinfection Unit Powered by a Photovoltaic System

  • Riahi, Said;Mami, Abdelkader;Minzu, Viorel
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.175-182
    • /
    • 2022
  • This work presents a simulation model for a specific UV disinfection system (UVDS) powered by a Photovoltaic System. The global UVDS also includes the electronic converters, Electronic Ballast, UV Lamp and Motor Pump. The equations that model the physical components' behaviour are connected to obtain a dynamic global model. The latter is converted in a Simulink/Matlab model, which allows to carry out simulation series concerning the entire UVDS. The physical parameters: the irradiation G and the temperature T, are considered as inputs. series of measurements carried out in order to show how these parameters affect the current, the voltage of the PVs and especially the value of the current of the UV lamp, on the other hand a study on the behavior and the evolution of the parameters of the motor pump such as the armature current, motor torque, speed of rotation and the water flow. The purpose of all this is to realize how important are the two parameters concerning the lamp current and the water flow because they are two very important factors to keep an adequate water quality.