• Title/Summary/Keyword: electron transition

Search Result 679, Processing Time 0.024 seconds

Transmission Electron Microscopy Sample Preparation of Ge2Sb2Te5 Nanowire Using Electron Beam

  • Lee, Hee-Sun;Lee, Jun-Young;Yeo, Jong-Souk
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.199-202
    • /
    • 2015
  • A simple and novel transmission electron microscopy (TEM) sample preparation method for phase change nanowire is investigated. A $Ge_2Sb_2Te_5$ (GST) nanowire TEM sample was meticulously prepared using nanomanipulator and gas injection system in a field emission scanning electron microscopy for efficient and accurate TEM analysis. The process can minimize the damage during the TEM sample preparation of the nanowires, thus enabling the crystallographic analysis of as-grown GST nanowires without unexpected phase transition caused by e-beam heating.

Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile

  • Adhikary, Keshab Kumar;Lumbiny, Bilkis Jahan;Dey, Shuchismita;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2628-2632
    • /
    • 2011
  • The nucleophilic substitution reactions of Y-O-aryl phenyl phosphonochloridothioates with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are kinetically investigated in acetonitrile at $55.0^{\circ}C$. The deuterium kinetic isotope effects (DKIEs) invariably increase from an extremely large secondary inverse ($k_H/k_D$ = 0.439; min) to a primary normal ($k_H/k_D$ = 1.34; max) as both substituents of nucleophile (X) and substrate (Y) change from electron-donating to electron-withdrawing. These results are opposite to the DKIEs on Y-O-aryl methyl phosphonochloridothioates, and can be rationalized by the gradual transition state (TS) variation from backside to frontside attack. The trigonal bipyramidal pentacoordinate TS is proposed for a backside attack, while the hydrogen-bonded, four-center-type TS is proposed for a frontside attack. The negative values of the cross-interaction constants (${\rho}_{XY(H)}$ = -0.38 for $XC_6H_4NH_2$ and ${\rho}_{XY(D)}$ = -0.29 for $XC_6H_4ND_2$) indicate that the reactions proceed by a concerted $S_N2$ mechanism.

PL Study on the ZnO Thin Film with Temperatures (온도 변화에 따른 ZnO 박막에 대한 PL 연구)

  • Cho, Jaewon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.83-86
    • /
    • 2013
  • The optical properties of ZnO thin film have been studied using photoluminescence(PL) spectroscopy with the change of sample temperatures from 10 K to 290 K. The spectrum at 10 K showed the characteristic emission lines of ZnO which were as follows: free exciton(FX) at 3.369 eV, neutral donor-bound exciton($D^0X$) at 3.360 eV, two electron satellite(TES) at 3.332 eV, $D^0X$-1LO at 3.289 eV, and donor-acceptor pair(DAP) transiton at 3.217 eV. From the spectral evolution with temperatures, two features could be identified as temperature went higher: (1) the bound excitons changed gradually into free excitons, (2) DAP turned into free electron-acceptor transition(e,$A^0$). The PL intensity of free exciton increased with the increase of temperatures, which was accompanied by the decrease of the intensity of bound excitions and bound excition-related transitons such as TES and $D^0X$-1LO. At 80 K DAP transition disappeared, while (e,$A^0$) transition started to appear at 30 K.

NONTHERMAL BROADENING OF UV LINES OBSERVED AT THE LIMB OF THE QUIET SUN

  • LEE HVUNSOOK;YUN HONG SIK;CHAE JONGCHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.57-73
    • /
    • 2000
  • We have done a spectroscopic study of the solar transition region using high resolution UV & EUV data obtained by SUMER(Solar Ultraviolet Measurements of Emitted Radiation) on board SOHO(Solar and Heliospheric Observatory). Optically thin and conspicuous emission lines observed at the solar limb are carefully selected to acquire average values of physical parameters for the quiet region as a function of radial distance. Our main results found from the present study can be summarized as follows. 1) Nonthermal velocities estimated from various UV lines do not decrease with height at least within one total line intensity scale height above the limb. 2) Nonthermal velocity distribution with temperature is very similar to that of the disk center, in the sense that its peak is located around $2{\times}10^5 K$, but the value is systematically larger than that of the disk. 3) It is found that nonthermal velocity is inversely proportional. to quadratic root of electron density up to about 10 arc seconds above the limb, i.e. ${\xi}\~N_e^{-1/4}$, implying that the observed nonthermal broadening can be attributed to Alfven waves passing through the medium. 41 Electron density estimated from the O V 629/760 line ratio is found to range from about $1{\times}10^{10}cm^{-3}$ to $2{\times} 10^{12}cm^{-3}$ in the transition region.

  • PDF

Substituent Effects on the Leaving Groups in Benzyl Arenesulfonates (Benzyl Arenesulfonate의 離脫基의 置換基效果에 關한 硏究 (第 1 報))

  • Yoh Soo Dong
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.116-122
    • /
    • 1975
  • Determination has been made of the kinetics of the reaction of benzyl arenesulfonates with pyridine in acetone. The substituent effects of the leaving groups in benzyl arenesulfonates are correlated by Hammett equations, with the exception of p-MeO and $p-NO_2$ groups, where the electron attracting substituents in the benzyl arenesulfonate increase the rate. The substituent effects of the leaving groups are as expected due to the nucleophilic attack of amine on the benzyl carbon atom. This can be understood in terms of changes in bond formation (C-N) and bond breaking (C-O) in the transition state with charges in electron-attracting ability of the substituents. The predicted substituent effects may indicate a small increase in bond formation and thus a tighter transition state, in benzyl p-bromobenzene sulfonate than in benzyl p-nitrobenzenesulfonate. Predicting made by Thornton concerning the substituent effects on $S_N2$ transition state structures agrees with the changes in bond formation and bond breaking.

  • PDF

Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys (오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2 (MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과)

  • 이동윤;김봉서;송재성;김양수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.

Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide (그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구)

  • Im, Su-Min;Cho, Seong-Min;Liu, Jun-Xing;Lim, Seungmin;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • In recent years, nanomaterials, such as nano-silica, carbon nanotubes, and graphene oxide (GO), have been suggested to improve the properties of the interfacial transition zone (ITZ) between aggregates and cement pastes, which has most adversely affected the strength of quasi-brittle concrete. Among the nanomaterials, GO with superior dispersibility has been reported to be effective in improving the properties of ITZ of normal-strength concrete by forming interfacial chemical bonds with Ca2+ ions abundant in ITZ. In this study, the effect of GO on the properties of ITZ in the high-strength mortar was elucidated by calculating the change in hydration heat release, ITZ thickness, and the porosity around ISO sand, which was obtained with isothermal calorimetry tests and scanning electron microscope image analysis, respectively.

Size-Controlled Cu2O Nanocubes by Pulse Electrodeposition

  • Song, You-Jung;Han, Sang-Beom;Lee, Hyun-Hwi;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • In this work, highly uniform size-controlled $Cu_2O$ nanocubes can be successfully formed by means of pulse electrodeposition. The size distribution, crystal structure, and chemical state of deposited $Cu_2O$ nanocubes are characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The phase transition from $Cu_2O$ to Cu can be controlled by constant current electrodeposition as a function of deposition time. In particular, the size of the $Cu_2O$ nanocubes can be controlled using pulse electrodeposition as a function of applied current density.

First-Principles Study of Magnetic Interactions between Transition Metal Ions in ZnO (ZnO내 전이 금속 불순물의 자기적 특성에 관한 제일원리 연구)

  • Lee, Eun-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.444-448
    • /
    • 2010
  • Based on first-principles calculations, we study the magnetic properties of Co, Ni, Fe, V, and Mn impurities in ZnO. The stabilities of the ferromagnetic state and the magnetic moment of each impurity largely depend on the amount of doped electron or hole. For lightly doped n-type ZnO, it is found that the doping of Ni ions is the most effective for inducing ferromagnetism, while Fe ions show the most stable ferromagnetic couplings for heavily doped n-type samples. The characteristics of the magnetic interactions of Co ions are similar with those of Fe ions, but Co ions require much larger amount of doped electron than Fe ions to show the ferromagnetic couplings. The ferromagnetic coupling between Mn and V ions is unstable in n-type conditions.