• Title/Summary/Keyword: electron microscope characteristics

검색결과 859건 처리시간 0.036초

650 ℃의 SO2 가스 환경 하에서 T22와 T92 강의 고온 부식특성 (High-Temperature Corrosion Characteristics of T22 and T92 Steel in SO2-Containing Gas at 650 ℃)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.285-291
    • /
    • 2019
  • In this study, the corrosion characteristics of T22 and T92 steel were investigated in 6O2 + 16CO2 + 2SO2 gas environment at 650 ℃. Corrosion characteristics were characterized by weight gain, oxide layer thickness, scanning electron microscope, optical microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction. T22 and T92 steel tended to stagnate oxide layer growth over time. Oxidation kinetics were analyzed using the data of oxide layer thickness, and a regression model was presented. The regression model was significantly acceptable. The corrosion rate between the two steels through the regression model showed significant difference. The T92 steel was approximately twice as large as the time exponent and showed very good corrosion resistance compared to the T22 steel. In both steels, the oxide layer mainly formed a Fe-rich oxide layer composed of hematite (Fe2O3), magnetite (Fe3O4), and spinel (FeCr2O4). Sulfide segregation occurred in the oxide layer due to SO2 gas. However, the locations of segregation for the T22 and T92 steel were different.

저압용 누전차단기의 스위칭에 따른 아크 비산 및 접점의 특성분석 (The analysis of arc dispersion and contacts characteristics according to switching of RCD for low voltage)

  • 김동우;김향곤;길형준;한운기;최충석
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.69-73
    • /
    • 2005
  • The arc dispersion and contacts characteristics were analyzed according to switching off Residual Current Protective Device(RCD) switch. Arc dispersion process was taken by high speed imaging system at a rate of 10,000 frames per second. When RCD was switched from on to off, art was observed and it took about 2.3[ms] from the generation of arc to the extinction of arc. When RCD was switched from off to on, arc was not observed. We repeated switching on and off 1000, 3000 and 6000 times. After repetition, the surface characteristics of contacts were taken by stereo microscope and Scanning Electron Microscope(SEM). From the scattering patterns analysis of arc and the analysis of deteriorated contacts, it could be applicable to the research of electric fire and arc suppression.

  • PDF

극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성 (Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications)

  • 정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

화학제염공정에서 환원공정조건에 따른 Inconel 600의 부식손상 특성 (Corrosion Damage Characteristics of Inconel 600 with Reduction Conditions in Chemical Decontamination Process)

  • 한민수;정광후;양예진;박일초;이정형;김성종
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.332-338
    • /
    • 2017
  • In this study, we evaluated tendency and degree of corrosion damages of Inconel 600 after chemical decontamination treatments under three different conditions. In the decontamination processes, the oxidation and reduction were performed as one cycle. Each process was continued up to 5 cycles. Characteristics of corrosion under decontamination processes were evaluated by Tafel analysis and weight loss. Characteristics of surface damage were observed by scanning electron microscope(SEM) and three-dimensional(3D) microscope. As the cycle proceeded, weight loss and corrosion current density increased. Intergranular corrosion damage occurred on the surface of the materials. The result revealed that the surface of Inconel 600 was attacked by the strong acid solution under all chemical decontamination processes, but the degree of the corrosion damage was different depending on the processes.

RCD 접점형태에 따른 산화특성 분석 (The Analysis of Oxidization Characteristics according to the shapes of RCD contacts)

  • 김동우;김향곤;길형준;한운기;최충석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.576-577
    • /
    • 2005
  • In this paper, the oxidization characteristics were analyzed according to the shapes of Residual Current Protective Device(RCD) contacts. RCD is an electrical safety device specially designed to immediately switch the electricity off when electric leakage is detected at a level harmful to a person using electrical equipment. The shapes of RCD contacts are a little bit different according to the models. When RCD is turned on, stationary and moving contact do not fit together. So, it can cause the increase of contact resistance. To discover the deterioration characteristics of RCD contacts by switching repetition, the contacts were analyzed by stereo microscope, Scanning Electron Microscope(SEM) and Energy Dispersive X-ray Spectrometer(EDS).

  • PDF

고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성 (Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.435-450
    • /
    • 2021
  • The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

Measurement of Porosity by EPMA-EDS Image Processing

  • Hung, Minhui;Li, Xiangting;Xia, Jiyu;Ding, Chuanxian
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.66-69
    • /
    • 1997
  • Porosity is one important characteristic feature and structural index of sprayed coatings. A method of measurement of porosity, EPMA-EDS image processing is developed in the paper. The characteristics of pores can be determined by processing of the image obtained from an electron microscope via VISTA, Not only the porosity can be presented but also the statistical result of pore size distribution. Finally it can be drawn from this paper that EPMA-EDS is a quite effective method to completely characterize the pores in plasma sprayed coatings.

  • PDF

탄소나노섬유가 강화된 하이브리드 복합재료의 기계적 물성 (Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites)

  • 공진우;정상수;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.31-34
    • /
    • 2004
  • Carbon nanofiber exhibits superior and often unique characteristics of mechanical, electrical chemical and thermal properties. In this study, For improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the effect of dispersion, The dispersion methods of solution blending and mechanical mixing were used. The mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by scanning electron microscope (SEM). Mechanical properties were measured by universal testing Machine (UTM).

  • PDF

SCM 435 강의 플라즈마 질화처리시 펄스 인자의 영향 (Influence of Pulse Parameters on the Plasma Nitriding of SCM435 Steels)

  • 송동원;이인섭
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1063-1067
    • /
    • 2001
  • The effect of the pulse parameters(pulse ratio and frequency) on the characteristics of the nitrided layer in the pulsed plasma nitrified SCM435 Steels was investigated. Material properties of the nitrided layer were analysed by employing optical microscope, scanning electron microscope(SEM), X-ray diffractometer(XRD) and micro-Vickers hardness tester. It was found that both the compound layer thickness and the surface hardness decreased with decreasing of pulse ratios. At high pulse ratio, the compound layer thickness and the surface hardness were rapidly decreased with decreasing frequency compared to lower pulse ratios.

  • PDF

목재의 미세조직구조를 이용한 서각작품 제작 (The Manufacture of Calligraphy-Woodcarving Artwork Using Anatomical Micro Structure of Wood)

  • 류현수;정성호;변희섭
    • 한국가구학회지
    • /
    • 제20권1호
    • /
    • pp.15-20
    • /
    • 2009
  • Marvelous calligraphy-woodcarving artwork was made by using the mysterious beauty of anatomical structure of wood. The wooden artwork uses not only beautiful external appearance of wood, but it also uses the mysterious beauty of anatomical micro structure of wood which can only be observed through optical microscope or scanning electron microscope. The characteristics of anatomical structure of wood were presented through various carving techniques. The used wood species for the artwork include Quercus acutissima Carruth., Cinnamomum japonicum Sieb., Betula davurica PALL, Magnolia kobus A.P.DC, Populus maximowiczii HENRY, Betula schmidtii REGEL and Plerocaya stenoptera DC. These various types of woodcarving techniques are anticipated to be applied to the techart marketing for architecture as a field of environment art.

  • PDF