• Title/Summary/Keyword: electron acceleration

Search Result 133, Processing Time 0.027 seconds

Construction of RHEED Apparatus and Study on K, Cs/Si)(111) System (RHEED 장치의 제작과 K, Cs/Si(111)계에 관한 연구)

  • 이경원;안기석;강건아;박종윤;이순보
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 1992
  • RHEED apparatus which is one of the systems of surface structure analysis has been constructed.Electron beam is focused by means of magnetic lens, and the beam divergence is about $1{\times}10^{-3}$ rad. The Acceleration voltage of this RHEED apparatus is continuously variable from 0 to 20 kV. K and Cs-adsorbed structureson Si(111)$7{\times}7$ surface at room and high temperatures($200{\times}700^{\circ}C$) have been investigated by RHEED. It is observed that the K and Cs-adsorbed Si(111)surface structures at saturation coverage are Si(111)$7{\tiems}7-K$ and Si(111)$1{\tiems}1-Cs$ at room temperature, respectively. When the specimen temperature was elevated during evaporation,the $3{\times}1$ structure appears in the range of temperature between $300^{\circ}C$ and $550^{\circ}C$, and the $1{\tiems}1$ structure appears above $550^{\circ}C$ in K/Si(111)system. Also, in Cs/Si(111) system the $\sqrt{3}{\times}\sqrt{3}$ structure appears at $300^{\circ}C$, and the $\sqrt{3}{\times}\sqrt{3}+3{\times}1$ structure appears between $350^{\circ}C$ and $400^{\circ}C$.

  • PDF

Simultaneous EUV and Radio Observations of Bidirectional Plasmoids Ejection During Magnetic Reconnection

  • Kumar, Pankaj;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.89.1-89.1
    • /
    • 2013
  • We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The EUV images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare occurrence. The kinked filament rises-up slowly and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward moving plasmoids in the solar corona. The EUV images from AIA $94{\AA}$ reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward and downward moving plasmoids are ~152-362 and ~83-254 km/s, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction/coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals presence of a hot flux-rope structure (visible in AIA 131 and $94{\AA}$) prior to the flare initiation and ejection of the multi-temperature plasmoids during the flare impulsive phase.

  • PDF

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

Effects of Green Tea Catechin on Cytochrome $P_{450}$, Xanthine Oxidase Activities in Liver and Liver Damage in Streptozotocin induced Diabetic Rats (Streptozotocin 유발 당뇨쥐에서의 Cytochrome P_{450}, Xanthine Oxidase 활성과 간조직의 손상에 미치는 녹차 Catechin의 영향)

  • 박규영;이순재;임정교
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.901-907
    • /
    • 1997
  • The purpose of this study was to investigate the effects of green tea catechin o n free radical generation system and peroxidative damage in the liver of streptozotocin(STZ)-induced diabetic rats. Spragu-Dawley male rats weighing 150$\pm$10gm were randomly assigned to one normal and three STZ-induced diabetic groups; diabetic groups were classified to catechin free diet(DM-oC group), 0.5% catechin diet(DM-0.5C group) and 1% catechin diet(DM-1C group) according to the levels of dietary catechin supplementation. Diabetes was experimentally induced by intravenous injection of 55mg/kg of body wt of STZ in citrate buffer(pH 4.3) after feeding of three experimental diet for 4 weeks. Animals were sacrificed at the 6th day of diabetic states. Activities of serum glutamic oxaloacetic transaminase(GPT) in DM-oC groups were higher than those of the normal group, and those in catechin supplementation group were similar to those of the normal group. Liver lipid peroxide values increased by 153%, 49%, and 27% in Dm-oC, DM-0.5C and DM-0C and Dm-1C but was not significantly different in catechin supplementation groups compared with the normal group, and liver cytochrome $P_{450}$ contents was similar to result of XOD activity. In electron microscopic examination of liver, lysosome was relatively scattered in Dm-oC and Dm-0.5C group and preserved normal shapes in DM-1C group. The present results indicate that STZ-induced diabetic rats are more sensitive to oxidative stress, leading to the acceleration of lipid peroxidation process, but this was reduced by anti-oxidative effect of high level of dietary catechin. It is concluded that dietary catechin serves as powerful antioxidant against lipid peroxidation in diabetic rats.

  • PDF

Substrate tempperature dependence of crystalline Y2O3 films grown by Ionized Cluster Beam Deposition

  • Cho, M.H.;Whangbo, S.W.;Seo, J.G.;Choi, S.C.;Cho, S.J.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.87-89
    • /
    • 1998
  • The Y2O3 films on Si(111) was grown by ionized cluster beam depposition (ICBD) in ultrahigh-vacuum (UHV). The acceleration voltage and oxygen ppartial ppressure were fixed at 5 kV and 2$\times$10-5 Torr resppectively. The substrate tempperature was varied from 10$0^{\circ}C$ to $600^{\circ}C$ in order to find the deppendence of crystallinity of Y2O3 films on the substrate tempperature. The crystallinity of the films with the substrate tempperature studied using x-ray diffraction (XRD) and Rutherford backscattering sppectroscoppy (RES). Surface crystallinity and surface morpphology of the films were also investigated using the reflection high-energy electron diffraction (RHEED) and atomic force microscoppe (AFM) resppectively. The films grown at the substrate tempperature below 50$0^{\circ}C$showed the ppoly-crystalline structure of oxygen deficiency. On the contrary the single-crystalline structure was obtained at the substrate tempperature over 50$0^{\circ}C$ and the stochimetry was gradually matched as increasing the substrate tempperature. The surface morpphology showed the increase of the surface roughness as the substrate tempperature was increased upp to 50$0^{\circ}C$ The crystallinity of the film was not good and the minimum channeling yield $\chi$min was measured at 0.91 The stochiometric and high crystallinine film (surface $\chi$min=0.25) was obtained as the substrate tempperature increased upp to 60 $0^{\circ}C$ which indicate the tempperature was sufficient to migrate the depposited atom.

  • PDF

Application of Metal Oxide Nanofiber for Improving Photovoltaic Properties of Dye-Sensitized Solar Cells (염료감응형 태양전지의 광전기적 특성 개선을 위한 금속산화물 나노파이버의 응용)

  • Dong, Yong Xiang;Jin, En Mei;Jeong, Sang Mun
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.249-254
    • /
    • 2018
  • In order to improve the photo conversion efficiency (${\eta}$) of dye-sensitized solar cells (DSSCs), the electrospun $TiO_2$, $SiO_2$, $ZrO_2$ and $SnO_2$ nanofibers were added into the hydrothermally prepared $TiO_2$ nanoparticles for application to a photoelectrode for DSSCs. The $TiO_2$ nanofiber added photoelectrode exhibited a higher photo current density ($J_{sc}$) compared to the bare $TiO_2$ nanoparticles, which is caused from acceleration of the transfer of excited electron from dye molecule due to the nanofiber structure. The DSSCs with $SiO_2$ nanofibers shows a higher open circuit voltage ($V_{oc}$) of 0.67 V and the highest photo conversion efficiency was found to be 6.24%.

Spectroscopic and Electrochemical Study on the Citrate-based CuNi Codeposition (구연산 기반 구리-니켈 합금도금에 대한 분광학적/전기화학적 특성 연구)

  • Lee, Joo-Yul;Yim, Seong-Bong;Kim, Man;Jeong, Yong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.117-123
    • /
    • 2011
  • We investigated the spectroscopic and electrochemical properties of the citrate-based CuNi solution at different solution pH and analyzed various surface properties of CuNi codeposition layer. By combining UV-Visible spectroscopic data with potentiodynamic polarization curves, it could be found that the complexation of $Ni^{2+}$-citrate pair was completed at lower solution pH than $Cu^{2+}$-citrate pair and was affected by the coexistent $Cu^{2+}$ ions, while the complexation between $Cu^{2+}$ ions and citrate was not sensitive to the presence of $Ni^{2+}$ ions. Also, the electron transfer from cathode to $Cu^{2+}$-citrate and$Ni^{2+}$-citrate was hindered by strong complexation between $Cu^{2+}/Ni^{2+}$ ions and citrate and so apparent codeposition current densities were reduced as the solution pH increases. CuNi codeposited layers had a higher Cu content when they were prepared at high pH solution due to the suppression of Ni deposition, and when codeposition was executed in an agitated condition due to the acceleration of mass transfer of $Cu^{2+}$ ions in the solution. Actually, solution pH had little effect on the surface morphology and deposits orientation, but greatly influenced the corrosion resistance in 3.5% NaCl solution by modifying the chemical composition of CuNi layers and so pH 3 was expected as the most suitable solution pH in the viewpoint of corrosion coatings.

Failure Mechanism and Long-Term Hydrostatic Behavior of Linear Low Density Polyethylene Tubing (선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 장기 정수압 거동)

  • Weon, Jong-Il;Chung, Yu-Kyoung;Shin, Sei-Moon;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.440-445
    • /
    • 2008
  • The failure mechanism and failure morphology of linear low density polyethylene (LLDPE) tubing under hydrostatic pressure were investigated. Microscopic observations using video microscope and scanning electron microscope indicate that the failure mode is a brittle fracture including cracks propagated from inner wall to outer wall. In addition, oxidation induction time and Fourier transform infrared spectroscopy results show the presence of exothermic peak and the increase in carbonyl index on the surface of fractured LLDPE tubing, due to thermal-degradation. An accelerated life test methodology and testing system for LLDPE tubing are developed using the relationship between stresses and life characteristics by means of thermal acceleration. Statistical approaches using the Arrhenius model and Weibull distribution are implemented to estimate the long-term life time of LLDPE tubing under hydrostatic pressure. Consequently, the long-term life time of LLDPE tubing at the operating temperature of $25^{\circ}C$ could be predicted and also be analyzed.

Evaluation on the Mechanical Performance and Microstructure of Cement Pastes Using Carbon Nanotube (탄소나노튜브 적용 시멘트 페이스트의 역학적 성능 및 미세구조 평가)

  • Chae-Ik, Lim;Se-Ho, Park;Won-Woo, Kim;Jae-Heum, Moon;Seung-Tae, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.489-497
    • /
    • 2022
  • In this study, the fluidity, mechanical properties and microstructure of cement pastes with carbon nanotube (CNT) were experimentally investigated. The 6 types of cement paste mixes with different PCE:CNT and w/b had been manufactured, and several tests including flow, compressive strength, absorption and water porosity were performed on cement pastes with or without CNT.Additionally, microstructural observations such as x-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out to examine hydrates formed in cement paste with CNT. As a result, it was found that the performance of cement pastes with CNT was better compared to that of control cement paste (OPC) due to both of hydration acceleration effect and filling effect. Furthermore, the SEM images clearly showed that CNT can bridge cracks formed in cement matrix. Conclusively, it is believed that the CNT, if mixed appropriately, could be an option as nono-materials to improve performance of concrete structures.

The Corrosion Behavior of Hydrogen-Charged Zircaloy-4 Alloys (수소 장입된 Zircaloy-4 합금에서의 부식거동)

  • Kim, Seon-Jae;Kim, Gyeong-Ho;Baek, Jong-Hyeok;Choe, Byeong-Gwon;Jeong, Yo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.268-273
    • /
    • 1998
  • Standard Zircaloy-4 sheets, charged with 230-250ppm hydrogen by the gas-charging method and homogenized at $400^{\circ}C$ for 72hrs in a vacuum, were corroded in pure water and aqueous LiOH solutions using static autoclaves at $350^{\circ}C$. Their corrosion behaviors were characterized by measuring their weight gains with the corrosion time and observing their microstructures using an optical microscope and a scanning electron microscope. The elemental depth profiles for hydrogen and lithium were measured using a secondary ion mass spectrometry(S1MS) to confirm their distributions at the oxidelmetal interface. The normal Zircaloy-4 specimens corroded abruptly and heavily at the concentration of Li ions more than 30ppm in the aqueous solution. This is due to accelerations by the rapid oxidation of many Zr- hydrides formed by the large amount of absorbed hydrogen, resulting from the increased substitution of $Li^{+}$ ions with $Zr^{4+}$-sites in the oxide as the Li ion concentration increased. The specimens that had been charged with amounts of hydrogen greater than its solubility corroded early with a more rapid acceleration than normal specimens, regardless of the corrosion solutions. At longer corrosion times. however, normal specimens showed a rather accelerated corrosion rate compared to the hydrogen-charged specimens. These slower corrosion rates of the hydrogen-charged specimens at the longer corrosion times would be due to the pre-existent Zr-hydride in the matrix, which causes the hydrogen pick- up into the specimen to be depressed, when the oxide with an appropriate thickness formed.

  • PDF