DOI QR코드

DOI QR Code

Application of Metal Oxide Nanofiber for Improving Photovoltaic Properties of Dye-Sensitized Solar Cells

염료감응형 태양전지의 광전기적 특성 개선을 위한 금속산화물 나노파이버의 응용

  • Dong, Yong Xiang (Department of Chemical Engineering, Chungbuk National University) ;
  • Jin, En Mei (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • 동영상 (충북대학교 화학공학과) ;
  • 김은미 (충북대학교 화학공학과) ;
  • 정상문 (충북대학교 화학공학과)
  • Received : 2018.07.16
  • Accepted : 2018.07.24
  • Published : 2018.09.28

Abstract

In order to improve the photo conversion efficiency (${\eta}$) of dye-sensitized solar cells (DSSCs), the electrospun $TiO_2$, $SiO_2$, $ZrO_2$ and $SnO_2$ nanofibers were added into the hydrothermally prepared $TiO_2$ nanoparticles for application to a photoelectrode for DSSCs. The $TiO_2$ nanofiber added photoelectrode exhibited a higher photo current density ($J_{sc}$) compared to the bare $TiO_2$ nanoparticles, which is caused from acceleration of the transfer of excited electron from dye molecule due to the nanofiber structure. The DSSCs with $SiO_2$ nanofibers shows a higher open circuit voltage ($V_{oc}$) of 0.67 V and the highest photo conversion efficiency was found to be 6.24%.

염료감응형 태양전지의 광전변환효율(${\eta}$) 향상을 위하여 수열합성한 $TiO_2$ 나노입자에 전기방사한 $TiO_2$, $SiO_2$, $ZrO_2$$SnO_2$ 나노파이버를 첨가하여 광전극에 적용하였다. $TiO_2$ 나노파이버를 첨가한 염료감응형 태양전지는 순수한 $TiO_2$ 나노입자에 비해 높은 전류밀도($J_{sc}$)를 나타내었고 이것은 나노파이버 구조로 인하여 염료에서 여기된 전지의 전달 특성이 용이하여 나타난 현상으로 생각된다. 또한 $SiO_2$ 나노파이버를 첨가한 염료감응형 태양전지의 경우, 순수한 $TiO_2$ 나노입자를 이용한 것에 비해 보다 높은 0.67 V의 개방전압($V_{oc}$)을 나타내었고 에너지 변환효율 또한 6.24%로 가장 높게 나타났다.

Keywords

References

  1. Kim, J. S., Sim, E. J., Dao, W. D., and Choi, H. S., "Carbon Nanotube-Based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-Sensitized Solar Cells," Korean Chem. Eng. Res., 54(2), 262-267 (2016). https://doi.org/10.9713/kcer.2016.54.2.262
  2. Wan, D. Y., Fan, Z. Y., Dong, Y. X., Baasanjav, E., Jun, H. B., Jin, B., Jin, E. M., and Jeong, S. M., "Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries," J. Nanomater., 2018, 8082502 (2018).
  3. Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisava J. I., and Hanaya, M., "Highly-efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes," Chem. Commun., 51, 15894-15897 (2015). https://doi.org/10.1039/C5CC06759F
  4. Nath, N. C. D., Jung, I. S., Kim, S. W., and Lee, J. J., "Optimization of Hierarchical Light-Scattering Layers in $TiO_2$ Photoelectrodes of Dye-Sensitized Solar Cells," Sol. Energy, 134, 399-405 (2016). https://doi.org/10.1016/j.solener.2016.05.008
  5. Sakthivel, T., Kumar, K. A., Ramanathan, R., Senthilselvan, J., and Jagannathan, K., "Silver Doped $TiO_2$ Nano Crystallites for Dye-Sensitized Solar Cell (DSSC) Applications," Mater. Res. Express, 4, 126310 (2017). https://doi.org/10.1088/2053-1591/aa9e36
  6. Mahmod, A. S., Akhtar, M. S., Mahamed, I. M. A., Hamdan, R., Dakka, Y. A., and Barakat, N. A. M., "Demonstrated Photons to Electron Activity of S-doped $TiO_2$ Nanofibers as Photoanode in the DSSC," Mater. Lett., 225(15), 77-81 (2018). https://doi.org/10.1016/j.matlet.2018.04.108
  7. Cui, Y., He, X., Zhu, M., and Li, X., "Preparation of Anatase $TiO_2$ Microspheres with High Exposure (001) Facets as the Light-Scattering Layer for Improving Performance of Dye-sensitized Solar Cells," J. Alloys Compd., 694, 568-573 (2017). https://doi.org/10.1016/j.jallcom.2016.10.032
  8. Qin, D. Q., Gu, A., Liang, G., and Yan, L., "A Facile Method to Prepare Zirconia Electrospun Fibers with Different Morphologies and Their Novel Composites Based on Cyanate Ester Resin," RSC Adv., 2, 1364-1372 (2012). https://doi.org/10.1039/C1RA00974E
  9. Gaber, A., Abdel-Rahim, M. A., Abdel-Latief, A. Y., and Abdel-Salam, M. N., "Influence of Calcination Temperature on the Structure and Porosity of Nanocrystalline $SnO_2$ Synthesized by a Conventional Precipitation Method International," Int. J. Electrochem. Sci., 9, 81-95 (2014).
  10. Lin, Y. H., Weing, C. H., Srivastav, A. L., Lin, Y. T., and Tzeng, J. H., "Facile Synthesis and Characterization of N-Doped $TiO_2$ Photocatalyst and Its Visible-Light Activity for Photo-Oxidation of Ethylene," J. Nanomater., 2015, 807394 (2015).
  11. Fillippo, E., Carlucci, C., Capodilupo, A. L., Perulli, P., Conciauro, F., Corrente, G. A., Gigli, G., and Ciccarella, G., "Enhanced Photocatalytic Activity of Pure Anatase $TiO_2$ and Pt-$TiO_2$ Nanoparticles Synthesized by Green Microwave Assisted Route," Mater. Res., 18(3), 473-481 (1915). https://doi.org/10.1590/1516-1439.301914
  12. Jin, E. M., Park, J. Y., Gu, H. B., and Jeong, S. M., "Synthesis of $SnO_2$ Hollow Fiber Using Kapok Biotemplate for Application in Dye-Sensitized Solar Cells," Mater. Lett., 159, 321-324 (2015). https://doi.org/10.1016/j.matlet.2015.07.023
  13. Basahel, S. N., Ali, T. T., Mokhtar, M., and Narasimbarao, K., "Influence of Crystal Structure of Nanosized $ZrO_2$ on Photocatalytic Degradation of Methyl Orange," Nanoscale Res. Lett., 10, 73 (2015). https://doi.org/10.1186/s11671-015-0780-z
  14. Wang, J., Yu, J., Zhu, X., and Kong, X. Z., "Preparation of Hollow $TiO_2$ Nanoparticles Through $TiO_2$ Deposition on Polystyrene Latex Particles and Characterizations of Their Structure and Photocatalytic Activity," Nanoscale Res. Lett., 7(1), 646 (2012). https://doi.org/10.1186/1556-276X-7-646
  15. Ferreira, C. S., Santos, P. L., Bonacin, J. A., Passos, R. R., and Pocrifka, L. A., "Rice Husk Reuse in the Preparation of $SnO_2$/SiO2 Nanocomposite," Mater. Res., 18(3), 639-643 (2015). https://doi.org/10.1590/1516-1439.009015
  16. Wu, W., Jiang, C., and Roy, V. A. L., "Recent Progress in Magnetic Iron Oxide-Semiconductor Composite Nanomaterials as Promising Photocatalysts," Nanoscale, 7, 38-58 (2015). https://doi.org/10.1039/C4NR04244A
  17. Daeneke, T., Kwon, T., Holmes, A. B., Duffy, N. W., Bach, U., and Spiccia, L., "High-Efficiency Dye-Sensitized Solar Cells with Ferrocene-Based Electrolytes," Nat. Chem., 3, 211-215 (2011). https://doi.org/10.1038/nchem.966
  18. Li, S., Chen, F., Schafranek, R., Bayer, T. J. M., Rachut, K., Fuchs, A., Siol, S., Weidner, M., Hohmann, M., and Pfeifer, V., "Intrinsic Energy Band Alignment of Functional Oxides," Phys. Status Solidi RRL - Rapid Res. Lett., 8(6), 571-576 (2014). https://doi.org/10.1002/pssr.201409034
  19. Yang, J. K., Kim, W. S., and Park, H. H., "Chemical Bonding States and Energy Band Gap of $SiO_2$-Incorporated $La_2O_3$ Films on n-GaAs (001)," Thin Solid Films, 494(1-2), 311-314 (2006). https://doi.org/10.1016/j.tsf.2005.08.159
  20. Xiao, M., Li, Y., Lu, Y., and Ye, Z., "Synthesis of $ZrO_2$:Fe Nanostructures with Visiblelight Driven $H_2$ Evolution Activity," J. Mater. Chem. A, 3, 2701-2706 (2015). https://doi.org/10.1039/C4TA05931J
  21. Lee, C. P., "Enhanced Performance of a Dye-Sensitized Solar Cell with the Incorporation of Titanium Carbide in the $TiO_2$ Matrix," Phys. Chem. Chem. Phys., 12, 9249-9255 (2010). https://doi.org/10.1039/b923477b
  22. Zhao, X. G., Park, J. Y., Jin, E. M., and Gu, H. B., "Tuning the Interfacial Area and Porosity of $TiO_2$ Film for Enhanced Light Harvesting in DSSCs," J. Electrochem. Soc., 162(1) E1-E6 (2015). https://doi.org/10.1149/2.0061501jes