Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 22NANO-C156177-03)으로 수행되었습니다. 이에 감사드립니다.
References
- Alafogianni, P., Daaaios, K., Tsakiroglou, C.D, Matikas, T.E., Barkoula, N.M. (2019). Effect of CNT addition and dispersive agents on the transport properties and microstructure of cement mortars, Construction and Building Materials, 197, 251-261. https://doi.org/10.1016/j.conbuildmat.2018.11.169
- Kim, W.W., Moon, J.H., Yang, K.H. (2022). Experimental study on the reological properties of carbon nano materials as cement composites, Journal of the Korean Recycled Construction Resources Institute, 10(3), 227-234 [in Korean].
- Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P. (2010). Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nano composites, Cement and Concrete Composites, 32(2), 110-115. https://doi.org/10.1016/j.cemconcomp.2009.10.007
- Lee, S.T. (2017). Application of nylon fiber for performance improvement of recycled coarse aggregate concrete, Journal of the Korea Academia-Industrial Cooperation Society, 18(12), 785-792 [in Korean].
- Li, G., Wang, L., Yu, J., Yi, B., He, C., Wang, Z., Leung, C.K.Y. (2022). Mechanical properties and material characterization of cement mortar incorporating CNT-engineered polyvinyl alcohol latex, Construction and Building Materials, 345, 128320. https://doi.org/10.1016/j.conbuildmat.2022.128320
- Parveen, S., Rana, S., Fangueiro, R., Paiva, M.C. (2015). Microstructure and mechnical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique, Cement and Concrete Research, 73, 215-227.
- Shi, T., Li, Z., Guo, J., Gong, H., Gu, C. (2019). Research progress on CNTs/CNFs-modified cement-based composites-a review, Construction and Building Materials, 202, 290-307. https://doi.org/10.1016/j.conbuildmat.2019.01.024
- Stephns, C., Brown, L., Sanchez, F. (2016). Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response, Carbon, 107, 482-500. https://doi.org/10.1016/j.carbon.2016.05.076
- Vesmawala, G.R., Vaghela, A.R., Yadav, K.D., Patil, Y. (2020). Effectiveness of polycarboxylate as a dispersant of carbon nanotubes in concrete, Materials Today: Proceedings, 28, 1170-1174. https://doi.org/10.1016/j.matpr.2020.01.102
- Xu, S., Liu, J., Li, Q. (2015). Mechnical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, Construction and Building Materials, 76, 16-23. https://doi.org/10.1016/j.conbuildmat.2014.11.049
- Zain, M.F.M., Safiuddin, M., Mahmud, H. (2000). Development of high performance concrete using silica fume at relatively high water-binder ratios, Cement and Concrete Research, 30(9), 1501-1505. https://doi.org/10.1016/S0008-8846(00)00359-8
- Zou, B., Chen, S.J., Korayem, A.H., Collins, F., Wang, C.M., Duan, W.H. (2015). Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes, Carbon, 85, 212-220. https://doi.org/10.1016/j.carbon.2014.12.094