DOI QR코드

DOI QR Code

Evaluation on the Mechanical Performance and Microstructure of Cement Pastes Using Carbon Nanotube

탄소나노튜브 적용 시멘트 페이스트의 역학적 성능 및 미세구조 평가

  • Chae-Ik, Lim (Dept. of Civil Engineering, Kunsan National University) ;
  • Se-Ho, Park (Dept. of Civil Engineering, Kunsan National University) ;
  • Won-Woo, Kim (Korea Institute of Civil engineering and Building Technology) ;
  • Jae-Heum, Moon (Korea Institute of Civil engineering and Building Technology) ;
  • Seung-Tae, Lee (Dept. of Civil Engineering, Kunsan National University)
  • 임채익 (군산대학교 토목공학과 ) ;
  • 박세호 (군산대학교 토목공학과 ) ;
  • 김원우 (한국건설기술연구원 구조연구본부) ;
  • 문재흠 (한국건설기술연구원 구조연구본부) ;
  • 이승태 (군산대학교 토목공학과 )
  • Received : 2022.11.13
  • Accepted : 2022.11.17
  • Published : 2022.12.30

Abstract

In this study, the fluidity, mechanical properties and microstructure of cement pastes with carbon nanotube (CNT) were experimentally investigated. The 6 types of cement paste mixes with different PCE:CNT and w/b had been manufactured, and several tests including flow, compressive strength, absorption and water porosity were performed on cement pastes with or without CNT.Additionally, microstructural observations such as x-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out to examine hydrates formed in cement paste with CNT. As a result, it was found that the performance of cement pastes with CNT was better compared to that of control cement paste (OPC) due to both of hydration acceleration effect and filling effect. Furthermore, the SEM images clearly showed that CNT can bridge cracks formed in cement matrix. Conclusively, it is believed that the CNT, if mixed appropriately, could be an option as nono-materials to improve performance of concrete structures.

본 연구에서는 CNT를 적용한 시멘트 페이스트의 유동성, 역학적 성능 및 미세구조를 실험적으로 평가하였다. PCE:CNT 및 w/b를 달리한 6종류 시멘트 페이스트를 제조하였으며, 플로우, 압축강도, 흡수율 및 투수공극량을 측정하여 CNT 혼입 페이스트의 성능을 측정하였다. 또, XRD 및 SEM 분석을 통하여 시멘트 페이스트의 미세조직구조 변화를 평가하였다. 실험결과에 따르면, CNT는 시멘트 페이스트의 수화촉진효과 및 채움효과로 인하여 OPC 배합에 비하여 성능이 향상되는 것을 확인할 수 있으며, 시멘트 페이스트 중 균열을 연결하는 CNT의 가교효과를 확인할 수 있었다. 결론적으로, CNT를 적절하게 혼입할 경우, CNT는 수화촉진 및 가교효과로 인하여 콘크리트의 성능을 향상시킬 수 있는 나노소재로써 적용가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 22NANO-C156177-03)으로 수행되었습니다. 이에 감사드립니다.

References

  1. Alafogianni, P., Daaaios, K., Tsakiroglou, C.D, Matikas, T.E., Barkoula, N.M. (2019). Effect of CNT addition and dispersive agents on the transport properties and microstructure of cement mortars, Construction and Building Materials, 197, 251-261. https://doi.org/10.1016/j.conbuildmat.2018.11.169
  2. Kim, W.W., Moon, J.H., Yang, K.H. (2022). Experimental study on the reological properties of carbon nano materials as cement composites, Journal of the Korean Recycled Construction Resources Institute, 10(3), 227-234 [in Korean].
  3. Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P. (2010). Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nano composites, Cement and Concrete Composites, 32(2), 110-115. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  4. Lee, S.T. (2017). Application of nylon fiber for performance improvement of recycled coarse aggregate concrete, Journal of the Korea Academia-Industrial Cooperation Society, 18(12), 785-792 [in Korean].
  5. Li, G., Wang, L., Yu, J., Yi, B., He, C., Wang, Z., Leung, C.K.Y. (2022). Mechanical properties and material characterization of cement mortar incorporating CNT-engineered polyvinyl alcohol latex, Construction and Building Materials, 345, 128320. https://doi.org/10.1016/j.conbuildmat.2022.128320
  6. Parveen, S., Rana, S., Fangueiro, R., Paiva, M.C. (2015). Microstructure and mechnical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique, Cement and Concrete Research, 73, 215-227.
  7. Shi, T., Li, Z., Guo, J., Gong, H., Gu, C. (2019). Research progress on CNTs/CNFs-modified cement-based composites-a review, Construction and Building Materials, 202, 290-307. https://doi.org/10.1016/j.conbuildmat.2019.01.024
  8. Stephns, C., Brown, L., Sanchez, F. (2016). Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response, Carbon, 107, 482-500. https://doi.org/10.1016/j.carbon.2016.05.076
  9. Vesmawala, G.R., Vaghela, A.R., Yadav, K.D., Patil, Y. (2020). Effectiveness of polycarboxylate as a dispersant of carbon nanotubes in concrete, Materials Today: Proceedings, 28, 1170-1174. https://doi.org/10.1016/j.matpr.2020.01.102
  10. Xu, S., Liu, J., Li, Q. (2015). Mechnical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, Construction and Building Materials, 76, 16-23. https://doi.org/10.1016/j.conbuildmat.2014.11.049
  11. Zain, M.F.M., Safiuddin, M., Mahmud, H. (2000). Development of high performance concrete using silica fume at relatively high water-binder ratios, Cement and Concrete Research, 30(9), 1501-1505. https://doi.org/10.1016/S0008-8846(00)00359-8
  12. Zou, B., Chen, S.J., Korayem, A.H., Collins, F., Wang, C.M., Duan, W.H. (2015). Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes, Carbon, 85, 212-220. https://doi.org/10.1016/j.carbon.2014.12.094