• Title/Summary/Keyword: electromagnetism

Search Result 39, Processing Time 0.02 seconds

Quantum-behaved Electromagnetism-like Mechanism Algorithm for Economic Load Dispatch of Power System

  • Zhisheng, Zhang;Wenjie, Gong;Xiaoyan, Duan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1415-1421
    • /
    • 2015
  • This paper presents a new algorithm called Quantum-behaved Electromagnetism-like Mechanism Algorithm which is used to solve economic load dispatch of power system. Electromagnetism-like mechanism algorithm simulates attraction and repulsion mechanism for particles in the electromagnetic field. Every solution is a charged particle, and it move to optimum solution according to certain criteria. Quantum-behaved electromagnetism-like mechanism algorithm merges quantum computing theory with electromagnetism-like mechanism algorithm. Superposition characteristic of quantum methodology can make a single particle present several states, and the characteristic potentially increases population diversity. Probability representation of quantum methodology is to make particle state be presented according to a certain probability. And the quantum rotation gates are used to realize update operation of particles. The algorithm is tested for 13-generator system and 40-generator system, which validates it can effectively solve economic load dispatch problem. Through performance comparison, it is obvious the solution is superior to other optimization algorithm.

Consideration on the Contents of the Electromagnetism Domain in the 2022 Revised Elementary School Science Curriculum (2022 개정 초등학교 과학과 교육과정의 전자기 영역 내용 구성에서 고려해야 할 것)

  • Cheong, Yong Wook;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.186-198
    • /
    • 2022
  • With the science curriculum about to be revised in 2022, this study aimed to guide curriculum revision by addressing suggested approaches to the electromagnetism education in elementary school science curriculum. The core concepts of electromagnetism are "electric field" and "magnetic field" as a medium of force, but the current curriculum does not properly describe the core concepts of electromagnetism. Mechanics and electromagnetism should be linked in elementary schools to form science curriculum based on core concepts to solve this problem. Additionally, the nine aspects of technology extracted in this study offer various educational contexts to match the development of engineering technology based on electromagnetism. However, the current curriculum does not comprise these various contexts and focuses on the limited content of electric circuits using light bulbs. Therefore, it is necessary to expand the scope of the curriculum to better mirror real-life technology. Through the use of more diverse materials and contexts, the scope and level of STS education as well as conceptual learning could be expanded. Finally, in the case of electric circuit learning, various issues such as difficulty in connecting electric circuits and electric field concepts, representativeness of electric circuit, students' learning difficulty, and phenomena-oriented learning should be considered.

A Case Study of Online Video Lecture : Focusing on 'Electromagnetism' Course at Junior College (온라인 동영상 수업 사례 : 전문대학 '전기자기학' 교과목을 중심으로)

  • Kim, Mi-ra
    • Journal of Engineering Education Research
    • /
    • v.25 no.5
    • /
    • pp.94-103
    • /
    • 2022
  • In this study, we examined the cases of online video classes conducted under the COVID-19 situation for 46 first-year students majoring in electrical engineering at a 3-year college in Gyeongnam. The research was carried out according to the course development process so that classes could be conducted efficiently, focusing on electromagnetism(1) course in the second semester of the first year. The online class consisted of uploading PPT recorded videos and lecture materials to the LMS and giving assignments. The contents of the study were in the scope of examining learners' perceptions through online learning contents, assignment submission, mutual feedback between instructors and learners, university-level lecture evaluation, and free opinions on online video-based electromagnetism(1) classes. As a result of the study, it was confirmed that online lecture review and problem-solving are particularly important for understanding lecture materials, and also given the nature of engineering subjects that require plenty of mathematical expressions, the detailed and immediate feedback provided by instructor enhances learners' class satisfaction and understanding. Based on these, the direction of online classes to be developed after the COVID-19 pandemic and teaching and learning methods suitable for the characteristics of subjects were discussed.

Electromagnetic Field and the Poetry of Ezra Pound

  • Ryoo, Gi Taek
    • Journal of English Language & Literature
    • /
    • v.57 no.6
    • /
    • pp.939-958
    • /
    • 2011
  • Ezra Pound has an idea of poetry as a field of energy in which words interact with each other with kinetic energy. The energy field which Pound creates in his poem is analogous to the theory of electromagnetism developed by Michael Faraday and James Maxwell, who look upon the space around magnets, electric charges and currents not as empty but as filled with energy and activity. Pound argues that "words are charged with force like electricity," demonstrating that words charged with their own images or energies of positive or negative valence interact one another. This idea is similar to Faraday's concept of "line of force" which he used to represent the disposition of electric and magnetic forces in space. Pound's concept of "image" as an "intellectual and emotional complex in an instant" is remarkably consonant with the confluence of electric and magnetic fields that are coupled to each other as they travel through space in the form of electromagnetic waves. The instant profusion of conception and perception, much like that of electric and magnetic fields, enables Pound to move beyond the sequential and linear hierarchy in time and space. Particularly, Maxwell's stunning discovery that the electromagnetic waves propagate in space at 'the speed of light' has allowed Pound a relativistic sense of escape from the limitations of Newtonian absolute time and space. Pound's poetry transcends any geographical space and sequential time by rendering and juxtaposing images simultaneously. Pound was fully aware of light and electricity fundamental to what he called his world "the electric world." Pound's experiments in Imagism and Vorticism can be considered an attempt to rediscover a place for poetry in the modern world of science and technology. Almost all the appliances that we think of today as modern were laid down in the closing decades of the 19th century and the first decades of the 20th century, in response to the availability of electromagnetic energy. This paper explores how Pound responded to the age of modern technology and science, examining his conception of "image" through his many analogies and similes drawn from electromagnetism. Pound's imagist poetics and poetry come to embody, not only the characteristics of the electric age in the early twentieth century, but the principles of electromagnetism the electric age is based upon.

Special Protection and Control Scheme for Transmission Line Overloading Elimination Based on Hybrid Differential Evolution/Electromagnetism-Like Algorithm

  • Hadi, Mahmood Khalid;Othman, Mohammad Lutfi;Wahab, Noor Izzri Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1729-1742
    • /
    • 2017
  • In designing System Protection Schemes (SPSs) in power systems, protecting transmission network against extreme undesired conditions becomes a significant challenge in mitigating the transmission line overloading. This paper presents an intelligent Special Protection and Control Scheme (SPCS) using of Differential Evolution with Adaptive Mutation (DEAM) approach to obtain the optimum generation rescheduling to solve the transmission line overloading problem in system contingency conditions. DEAM algorithm employs the attraction-repulsion idea that is applied in the electromagnetism-like algorithm to support the mutation process of the conventional Differential Evolution (DE) algorithm. Different N-1 contingency conditions under base and increase load demand are considered in this paper. Simulation results have been compared with those acquired from Genetic Algorithm (GA) application. Minimum severity index has been considered as the objective function. The final results show that the presented DEAM method offers better performance than GA in terms of faster convergence and less generation fuel cost. IEEE 30-bus test system has been used to prove the effectiveness and robustness of the proposed algorithm.

Electromagnetism Mechanism for Enhancing the Refueling Cycle Length of a WWER-1000

  • Poursalehi, Navid;Nejati-Zadeh, Mostafa;Minuchehr, Abdolhamid
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.43-53
    • /
    • 2017
  • Increasing the operation cycle length can be an important goal in the fuel reload design of a nuclear reactor core. In this research paper, a new optimization approach, electromagnetism mechanism (EM), is applied to the fuel arrangement design of the Bushehr WWER-1000 core. For this purpose, a neutronic solver has been developed for calculating the required parameters during the reload cycle of the reactor. In this package, two modules have been linked, including PARCS v2.7 and WIMS-5B codes, integrated in a solver for using in the fuel arrangement optimization operation. The first results of the prepared package, along with the cycle for the original pattern of Bushehr WWER-1000, are compared and verified according to the Final Safety Analysis Report and then the results of exploited EM linked with Purdue Advanced Reactor Core Simulator (PARCS) and Winfrith Improved Multigroup Scheme (WIMS) codes are reported for the loading pattern optimization. Totally, the numerical results of our loading pattern optimization indicate the power of the EM for this problem and also show the effective improvement of desired parameters for the gained semi-optimized core pattern in comparison to the designer scheme.

Secondary Science Teachers' Perception about and Actual Use of Visual Representations in the Teaching of Electromagnetism (중등 전자기 수업에서 사용하는 시각적 표상에 대한 교사 인식 및 활용 실태)

  • Yoon, Hye-Gyoung;Jo, Kwanghee;Jho, Hunkoog
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.253-262
    • /
    • 2017
  • This study aims at investigating the perceptions of science teachers about the role of visual representations in the teaching of electromagnetism, and finding out how science teachers use visual representations in their teaching of electromagnetism and the difficulties they experience in dealing with those representations. A total of 121 science teachers responded to the online survey. The results showed that most of the teachers agreed to the significance of using visual representations in the classroom but regarded their role as means of simply delivering science knowledge rather than constructing or generating knowledge. For the three visual representations widely used in teaching of electromagnetism in secondary schools (electrostatic induction on electroscope, magnetic field around current carrying wire, structure and principle of electric motor), the teachers preferred teacher-centered use of visual representations rather than student-centered and teacher's construction of representations were the most frequent among four types of use; interpretation, construction, application, and evaluation. The difficulties of teaching with these three visual representations were categorized into several factors; teachers, students, the characteristics of the representations, and lack of resources and classroom environment. Teachers' limited perceptions about the role of visual representations were associated with the ways of using visual representations in their teaching. Implications for the effective use of visual representations for science learning and teaching were discussed.

Analysis on the Surge Characteristics of the Solenoid Valve for Anti-Lock Brake System (미끄럼방지 제동장치용 솔레노이드 밸브의 맥동특성 해석)

  • Kim, Byeong-Woo;Park, Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2083-2088
    • /
    • 2010
  • It is necessary to carry out quantitative analysis for the ABS hydraulic modulator to upgrade the system performances. Mathematical modeling method for the ABS hydraulic modulator, is suggested in the view of electromagnetism and fluid mechanics. Also, an analytic method is proposed for the resultant forces of electromagnetism and hydraulic pressure generated in the real vehicle ABS. The relationships between the design factor of Inlet & outlet solenoid valve and the system performance of ABS, are investigated through the analytical precess.

Electromagnetic Vector Fields Simulation with Mathematica (전자기 벡터장 시각화를 위한 Mathematica 시뮬레이션)

  • Choi, Yong-Dae;Yun, Hee-Joong
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.69-77
    • /
    • 2012
  • Visualization of the electromagnetic vector fields are presented and examined with Mathematica. Vector fields may be used to represent a great of many physical quantities in various area of physics, including electromagnetism with vector differential operators. Because they deal with abstract, three-dimensional fields that are some times very difficult to visualize, electromagnetism can be conceptually rather difficult. Visual representation of such an abstract vector fields is invaluable to student or researchers working in this field and also helps teaching electromagnetism to physics or engineering students. Mathematica provides a wider range of graphical tools including plot of vector fields and vector analysis, which can be applied to visualization of electromagnetic system. We have visualized the most fundamental concepts of the electromagnetic vector $\vec{E}=-\vec{\nabla}_{\varphi}$, $\vec{D}={\epsilon}\vec{E}$, $\vec{\nabla}{\times}\vec{A}$, $\vec{B}={\mu}\vec{H}$, $\vec{B}={\mu}_0(\vec{H}+\vec{M})$, which are confirmed with vector calculations and valid graphically with some presentations.

Terahertz time domain spectroscopy of GdBCO superconducting thin films

  • Ji, Gangseon;Park, Woongkyu;Lee, Hyoung-Taek;Song, Chang-Yun;Seo, Choongwon;Park, Minjo;Kang, Byeongwon;Kim, Kyungwan;Kim, Dai-Sik;Park, Hyeong-Ryeol
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.15-17
    • /
    • 2019
  • We present terahertz optical properties of $GdBa_2Cu_3O_{7-x}$ (GdBCO) superconducting thin films. GdBCO films with a thickness of about 105 nm were grown on a $LaAlO_3$ (LAO) single crystal substrate using a conventional pulsed laser deposition (PLD) technique. Using an Ar ion milling system, the thickness of the GdBCO film was reduced to 58 nm, and its surface was also smoothened. Terahertz (THz) transmission spectra through two different GdBCO films are measured over the range between 0.2 and 1.5 THz using THz time domain spectroscopy. Interestingly, the THz transmission of the thinner GdBCO film has been increased to six times larger than that of the thicker one, while the thinner film is still maintaining its superconducting property at below 90 K.