• Title/Summary/Keyword: electromagnetic-force

Search Result 650, Processing Time 0.025 seconds

Vibration Analysis for BLDC Motor by Electromagnetic Exciting Force (전자기 가진력에 의한 BLDC 전동기의 진동 특성 해석)

  • Chung, H.J.;Shin, P.S.;Woo, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.118-120
    • /
    • 2007
  • This paper deals with the vibration analysis of characteristics for BLDC motor by electromagnetic exciting force. Vibration analysis of electric machine is mainly divided into mechanical and electrical approach. However, it need to execute coupling analysis of mechanical and electrical computation because the vibration sources have relation to each other. Magnetic fields is calculated from Maxwell stress method with electromagnetic finite element method. And magnetic radial force is calculated from previous magnetic fields. With coupled electromagnetic and structure finite element, the vibratory behavior between the phase commutation advancing technique and pulse-width control is investigated in single phase brushless dc motor.

  • PDF

The effect of external electromagnetic force in GMAW (외부 전자기력을 이용한 가스메탈 아크용접법에 관한 연구)

  • Lee, Seong-Ho;Lee, Jae-Yun;Kim, Jae-Seong;Lee, Bo-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1741-1746
    • /
    • 2003
  • Effects of electromagnetic force which is one of the most important factor of metal transfer that affects bead geometry and microstructure of weld metal in GMAW(gas metal arc welding). In this paper, different ways of external electromagnetic forces were applied on GMAW process and their effects on the welding were studied. On certain conditions, better bead geometry, better influence on the arc and metal transfer mode and higher welding efficiency could be obtained. Experimental methods and their results will be presented.

  • PDF

Topology Optimization of an Electromagnetic Coupler Considering Force Direction (힘의 방향성을 고려한 전자기 커플러의 위상 최적화)

  • Yang, Seung-Jin;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.230-235
    • /
    • 2006
  • The machine locking system is an important device for the safety of persons using the machine. In this study, a locking system using electromagnetic fields is proposed to decrease the defects and the cost for repairing and maintenance of the existing locking system using structural mechanism. We analyze the electromagnetic locking system and calculate the generated force considering direction by the finite element method. Also, we set up two design domains for the topology optimization; first domain is optimized to reduce the volume and the other is optimized to maximize the generated force keeping the volume, especially. The optimal design is obtained by integration of the two optimized results. An improved design is obtained by the optimal topology and it is confirmed by comparison with the initial locking system.

  • PDF

Calculation of Electromagnetic Excitation Forces in Double Skewed Motors

  • Bao, Xiaohua;Di, Chong;Zhou, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.812-821
    • /
    • 2018
  • An electromagnetic excitation force is caused by the air-gap flux density, which greatly influences the noise and vibration of the motor. In many real projects, skewed slot technology is widely used to reduce the harmonic components of the air-gap flux density to reduce the noise and vibration of the motor. However, a skewed slot has several side effects such as a transverse current and axial drifting. Thus, a double skewed slot rotor is selected with the aim of eliminating these side effects. This paper presents the exact structure of the double skewed slot rotor and the mechanism whereby the electromagnetic excitation force can be reduced. A multi-slice method is adopted to model the special structure. Finite element simulation is used to verify the theory.

Prediction of Electromagnetic Repulsion Force and Temperature Rise in Electric Contact Mechanism Using ANSYS (ANSYS를 이용한 전기 접촉 기구의 전자 반발력 분석 및 온도 상승 예측)

  • Park W.J.;Kim K.H.;Ahn K.Y.;Oh I.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.666-669
    • /
    • 2005
  • As computer power increased, the system with complex phenomenon has been analyzed with the help of CAE software which can handle the coupled physics, such as electromagnetic, structure, thermal and fluid physics. To predict the electromagnetic repulsion force and the temperature distribution of an air circuit breaker with electric contact mechanism, ANSYS/EMAG, FLOTRAN can be used. Although some assumptions and simplifications were introduced to simulate the model, results from the computational model were in good agreement with actual measurements obtained from experiments.

  • PDF

Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology (MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화)

  • Kim, Min-Kyu;Jung, Yong Sub;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.

An Experimental and Numerical Analysis of Flow of Electromagnetic Pump for Molted Metal Transport (용융금속 이송용 전자기 펌프의 유동해석 및 실험)

  • Choi, Jae-Ho;Lim, Hyo-Jae;Kim, Chang-Eob;Kwon, Jung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2621-2625
    • /
    • 2007
  • This study aims at analyzing the flow characteristics of the electromagnetic pump using a linear induction motor (LIM) for transferring molten metals. The flow characteristics of the pump are simulated by magnetohydrodynamic(MHD) program. In this system, the LIM is used for transferring molten metal by electromagnetic force. The molten metal is treated as the secondary part of the LIM. Since the LIM produces an electromagnetic force in the duct, the molten metal can flow from the furnace to the reservoir. The flow characteristics of the pump are analyzed using MHD program for magnetic field of 0.1[T] in duct. In order to prove the analysis, we made a prototype electromagnetic pump using LIM.

  • PDF

A Study on the Noise and Vibration Analysis of 200kW PMSM for Electric Propulsion Ship

  • Cho, Yang-Uk;Kang, Gyu-Hong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.389-393
    • /
    • 2014
  • This paper presents one of the methods for design to reduce the noise and vibration of 200kW motor for electric propulsion ship. One of the important factors affecting vibration of the motor is the resonance. The natural frequency and natural mode of the 200kW motor is analyzed by using FEM tool and impact test equipment to avoid the resonance. Also, compare FEM result with impact test result to make a reliable FE model of 200kW motor. In order to find out the effect of the noise and vibration of the motor by electromagnetic excitation force, conduct electromagnetic-structure coupled analysis. These characteristics are much useful to design 200kW motor for electric propulsion ship.

A Study on the Two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force (전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구)

  • Bae Hyung-Sub;Yang Taek-Joo;Lee Yuk-Hyung;Joo Dong-Woo;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.29-37
    • /
    • 2005
  • In this study, the control of the free surface deformation of a magnetic fluid for the change in electromagnetic force is discussed. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. Magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage sealing, oscillator for surface control, boundary layer control, MHD, flow control, flow using magnetic levitation system and surface actuator. This study show the deformation of surface rise due to the intensity of the magnetic field and possibility of two-dimensional control of magnetic fluid through the feedback data of hall sensor.

Nonlinear Vibration Analysis of Cantilever Beam Subject to Electromagnetic Force (전자력을 받는 외팔보의 비선형진동)

  • 최연선;서경석;우영주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.283-288
    • /
    • 2001
  • The nonlinear vibration of a cantilever beam due to electromagnetic force is studied. The dynamic responses of the beam show various phenomena with the variation of the system parameters, such as jump phenomenon, multiple solutions and the change of the natural frequency. The nonlinear stiffness due to electromagnetic forces which depends on air gap size is measured experimentally. This system was modeled by a single degree of freedom nonlinear dynamic system and solved numerically for the system parameters. The numerical results show good agreements with the experimental observations, which demonstrates the nonlinearity of magnetic force.

  • PDF