• Title/Summary/Keyword: electromagnetic wave

Search Result 1,625, Processing Time 0.025 seconds

A Method for the Analysis of the Radiowave Receiving Characteristics of the Electric Detonator (전기뇌관의 전파 수신특성 분석방법)

  • Kim, Mi-Sun;Park, Jin-Seok;Ahn, Bierng-Chearl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • In this paper, a method is proposed for the analysis of radiowave receiving characteristics of an ammunition with electric detonator. In this method, an ammunition with electric detonator is modelled as a receiving antenna with its gain obtained by computer simulation or measurement. The induced radiowave power is obtained by inserting the gain of the electric detonator in the antenna coupling formula. Radiowave receiving characteristics at very close distances are obtained by Treasuring the transmission coefficient between a half-wave dipole and the electric detonator model. Radiowave receiving characteristics of the electric detonator in a 105mm tank ammunition are obtained using the proposed method and the safety of the 900 MHz RFID reader on the detonator is assessed.

Wide-Bandwidth Wilkinson Power Divider for Three-Way Output Ports Integrated with Defected Ground Structure

  • Sreyrong Chhit;Jae Bok Lee;Dal Ahn;Youna Jang
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2024
  • This study presents the design of a Wilkinson power divider for three-way output ports (WPD3OP), which incorporates a defected ground structure (DGS). An asymmetric power divider is integrated into the output ports of the conventional Wilkinson power divider (WPD), establishing a three-way output port configuration. The DGS introduces periodic or irregular patterns into the ground plane to suppress unwanted electromagnetic wave propagation, and its incorporation can enhance the performance of the power divider, in terms of the power-division ratio, isolation, and bandwidth, by reducing spurious resonances. The proposed design algorithm for an asymmetric power divider for three-way output ports is analyzed via circuit simulations using High-Frequency Simulation Software (HFSS). The results verify the validity of the proposed method. The analysis of the WPD3OP integrated with DGS certifies the achievement of a center frequency of 2 GHz. This confirmation is supported by schematic ideal design simulation results and measurements encompassing insertion losses, return losses, and isolation.

Design and simulation of a rectangular planar printed circuit board coil for nuclear magnetic resonance, radio frequency energy harvesting, and wireless power transfer devices

  • Mostafa Noohi;Adel Pourmand;Habib Badri Ghavifekr;Ali Mirvakili
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.581-594
    • /
    • 2024
  • In this study, a planar printed circuit board (PCB) coil with FR4 substrate was designed and simulated using the finite element method, and the results were analyzed in the frequency domain. This coil can be used in wireless power transfer (WPT) as a transmitter or receiver, eliminating wires. It can also be used as the receiver in radio frequency energy-harvesting (RF-EH) systems by optimizing the planar PCB coil to convert radio-wave energy into electricity, and it can be employed as an excitation (transmitter) or receiver coil in nuclear magnetic resonance (NMR) spectroscopy. This PCB coil can replace the conventional coil, yielding a reduced occupied volume, a fine-tuned design, reduced weight, and increased efficiency. Based on the calculated gain, power, and electromagnetic and electric field results, this planar PCB coil can be implemented in WPT, NMR spectroscopy, and RF-EH devices with minor changes. In applications such as NMR spectroscopy, it can be used as a transceiver planar PCB coil. In this design, at frequencies of 915 MHz and 40 MHz with 5 mm between coils, we received powers of 287.3 μW and 480 μW, respectively, which are suitable for an NMR coil or RF-EH system.

Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence (인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템)

  • Lee, Kwan-Soo;Kim, Jae-U;Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.

Implementation and Verification for the Low RCS Characteristics of Active Phased Array Antenna (능동위상배열 안테나의 저피탐 특성 구현 및 검증)

  • Joung-Myoung Joo;;Heeduck Chae;Jongkuk Park;Young-Jo Choi;Hyeong-Ki Lee;Jeongyun Han;Jeong-Hwan Jeon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • As the latest weapon systems and electronic equipments are increasingly demanding stealth technology to improve the survivability of allies, it is necessary to implement low-observability technology that reduces the radar cross section(RCS). In order to implement this stealth technology, a method for low RCS characteristics by applying a shape design or a electromagnetic wave absorber is widely used. However, active phased array antennas have structural limitations in shape design, also when a absorber is applied to it, the performance of the antenna is degraded. Therefore, in this paper, in order to realize the low RCS characteristics of the active phased array antenna operating in the X-band, individual radiating elements suitable for applying the radio wave absorber were selected, and a 13x13 array antenna was designed and manufactured. Next, by comparing the measured results of the relative RCS and electrical performance for the manufactured antenna according to the presence and type of the absorber, it is shown that the electrical performance is maintained at an equal or higher level while obtaining the low RCS characteristics. Thereby the method proposed in this paper for implementing the low RCS characteristics was validated. Finally, it was confirmed that when the wave absorber is applied to the array antenna, the limitation of its performance deterioration can be overcome.

Geotechnical Engineering Characteristics of Ulleung Basin Sediment, East Sea (동해, 울릉 분지 심해토의 지반공학특성)

  • Lee, Chang-Ho;Yun, Tae-Sup;J.C., Santamarina;Bahk, Jang-Jun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.17-29
    • /
    • 2009
  • There has been an increase in the investigation of deep sea sediments with a consequent increase in the amount of energy required to undertake these investigations. The geotechnical characteristics of Ulleung Basin sediment are explored by using depressurized specimens following methane production tests carried out on pressured core samples obtained at 2,100 m water depth and 110 m below sea floor. Geotechnical index tests, X-ray diffraction, and scanning electron microscope are conducted to identify the geotechnical index parameters, clay mineralogy, chemical composition, and microstructure of the sediments. Compressibility, and elastic and electromagnetic wave parameters are investigated for two samples by using a multi sensing instrumented oedometer cell. The strength chatracteristics are obtained by the direct shear tests. The dominant clay minerals are mostly kaolinite, illite, chlorite, and calcite. The SEM shows a well-developed flocculated structure of the microfossil. Void ratio, electrical resistivity, real permittivity, conductivity, and shear wave velocity show bi-linear behavior with the effective vertical stress: as the vertical effective stress increases. The friction angle obtained by the direct shear test is about $21^{\circ}$, which is similar to the value observed in the Ulleung Basin sediments. This study shows that the understanding of the behavior acting on the diatomaceous marine sediment is important because it often maintains the useful energy resources such as gas hydrate and so will be the new engineering field in the next generation.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.139-147
    • /
    • 2006
  • This paper suggests an efficient method of protection ratio calculation and shows some results applicable to frequency coordination in microwave(M/W) relay system networks, and the net filter discrimination(NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively. NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. In addition, NFD and protection ratio for different systems with channel bandwidth 20 and 40 MHz have been investigated to be used for actual M/W networks. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

A Design of Gaussian Beam Guiding System for Cassegrain Antennas (카세그레인 안테나용 가우시안 빔 가이딩 시스템 설계)

  • Han, Seog-Tae;Lee, Jeong-Won;Kang, Jiman;Chung, Moon-Hee;Je, Do-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.851-868
    • /
    • 2015
  • A radio telescope which has been dominantly used for millimeter and submillimeter wave radio astronomy is a cassegrain antenna. A various receivers with specified observing bandwidths are installed on cassegrain antenna so as to carry out to investigate a diverse radio astronomy. A beam guiding system should be required so that a various receiver can be conducted their own observational frequency bands. The beam guiding system based on Gaussian beam transmission theory consists of quasi-optical circuit used such ellipsoidal mirror, dielectric lens and feed horn. In this paper, not only Gaussian beam transformations based on Gaussian beam theory are presented, but also design techniques for quasi-optical circuit are given. By using proposed design techniques, both Gaussian beam quasi-optical circuits to be used for cassegrain antenna and design results are also described. Properties of key focusing elements such ellipsoidal mirror and dielectric lens and feed horn are also discussed. It is expected that beam guiding system to be applied cassegrain antenna could be easily designed by using proposed design techniques.

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

A Method to Reduce the Size of Amplifiers using Defected Ground Structure (결합된 접지 구조를 이용한 증폭기의 소형화 방법)

  • Lim, Jong-Sik;Park, Jun-Seok;Kim, Chul-Soo;Lee, Young-Tak;Ahn, Dal;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.436-444
    • /
    • 2002
  • This paper presents a new method, which uses defected ground structure (DGS) on the ground planes of planar transmission lines such as microstrip and coplanar waveguide (CPW), to reduce the size of amplifiers. The main idea can be summarized as follow; DGS on the ground plane of microstrip or CPW line shows an increased slow-wave effect due to the additional equivalent L-C components. So the electrical length of the transmission line with DGS is longer than that of the standard transmission line for the same physical length. Then, the length of the transmission line with DGS can be shortened in order to maintain the original electrical length to be the same. This leads the matching of the original amplifier to be kept. In order to show the proposed method is valid, two kinds of amplifiers, the original amplifier and reduced amplifier, are fabricated, measured, and compared using both microstrip and CPW. The measured performances of the reduced amplifiers with DGS are quite similar to the ones of the original amplifiers for both microstrip and CPW amplifiers, even though the size of matching networks of the amplifiers with DGS are much smaller than those of the original amplifiers.