• Title/Summary/Keyword: electromagnetic vibration

Search Result 406, Processing Time 0.032 seconds

Topology Optimization of Pick-up Actuator of CD-ROM for Vibration Reduction (위상 최적 설계를 통한 CD-ROM 광 픽업 액추에이터의 진동 저감)

  • Wang, Se-Myung;Kim, Yong-Su;Park, Ky-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.479-484
    • /
    • 2000
  • The topology optimization of electromagnetic systems is investigated and the TOPEM (Topology Optimization for Electromagnetic Systems) is developed using the finite element method (FEM). The design sensitivity equation for topology optimization is derived using the adjoint variable method. The proposed method is validated by applying it to the topology optimizations of a C-core actuator and an optical pickup actuator.

  • PDF

Electromagnetic Actuator for Active Vibration Control of Precise System (초정밀 시스템의 능동 진동제어용 전자기 액츄에이터)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.228-230
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters. and electromagnetic actuators.

  • PDF

A new mount with moving-magnet type electromagnetic actuator for naval shipboard equipment

  • Shin, Yun-Ho;Moon, Seok-Jun;Kwon, Jeong-Il;Jung, Woo-Jin;Jeon, Jae-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • This study is proposed a new hybrid mount having a moving-magnet type electromagnetic actuator to reduce the vibration transmitted from naval shipboard equipment to the structure of the ship's hull. Optimal design specifications are determined through experimental analysis. The detailed design of the hybrid mount is determined through several design steps with electromagnetic numerical analysis using Maxwell Software(S/W). The hybrid mount that combines a rubber mount and an electromagnetic actuator has a fail-safe function for shock resistance. The mount is fabricated and tested using a universal testing machine to evaluate the design specifications. Finally, numerical simulation of the hybrid mount is performed to confirm control performance and applicability.

A Study on Diagnosis of The Energized Status of 22.9kV Multigrounded Underground Power Cable (22.9kV 다중 접지 지중 전력 케이블의 가압 상태 진단에 관한 기초 연구)

  • Kim, Chang-Gyo;Hong, Jin-Su;Jeong, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.699-703
    • /
    • 1999
  • An experimental study to identify the energized status of the 22.9kV underground power cable by the detection of vibration has been performed. We have derived that there exists vibration at double the line frequency in live cables by electromagnetic force. The relative amplitudes of the cable vibration according to the energized status of the cable were calculated by computer simulation. The cable vibration can also be picked up by accelerometer. A prototype was tested on the underground distribution system in Chonan substation, KEPCO. Comparison between simulation results and field test results was performed. The results showed that the energized status of the calble can be identified by measuring the vibration of the cable using accelerometer.

  • PDF

Correlation Analysis for Electormagnetic Vibration Source and RMF of Small IPMSM (소형 IPMSM의 전자기적 진동원과 가진력의 상관관계 분석)

  • Lee, Won-Sik;Cho, Gyu-Won;Jun, Byung-Kil;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1986-1991
    • /
    • 2016
  • The vibration soucre of motor has a electromagnetic and mechanical causes. The most widely known, electromagnetic reasons are cogging torque and RMF(Radial magnetic force). Recently, analysis of the cogging torque has been made actively. but analysis of the RMF was not filled. So, in this paper, analyzed RMF. the vibration test were performed for the basic and reduced model of cogging torque and RMF. And it analyzed for the effect of each factor on the vibration. Finally, the vibration was formulated for stator's weight and RMF. To this end, natural, cogging torque and RMF of frequency were analyzed and these relationships were considered.

Electrical Characteristics and Electromagnetic Excitation Force Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전기적 특성 및 전자기적 가진원 분석)

  • Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet(PM) motor according to the driving method that is Brushless DC(BLDC) drive and Brushless AC(BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis(FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

Design of a Moving-magnet Electromagnetic Actuator for Fast Steering Mirror through Finite Element Simulation Method

  • Long, Yongjun;Mo, Jinqiu;Wei, Xiaohui;Wang, Chunlei;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.300-308
    • /
    • 2014
  • This paper develops a moving-magnet electromagnetic actuator for fast steering mirror (FSM). The actuator achieves a reasonable compromise between voice coil actuator and piezoelectric actuator. The stroke of the actuator is between the strokes of a piezoelectric actuator and a voice coil actuator, and its force output is a linear function of air gap and excitation current within our FSM travel range. Additionally, the actuator is more reliable than voice coil actuator as the electrical connection in the actuator is static. Analytically modeling the actuator is difficult and time-consuming. Alternatively, numerous finite element simulations are carried out for the actuator analysis and design. According to the design results, a real prototype of the actuator is fabricated. An experimental test system is then built. Using the test system, the force output of the fabricated actuator is evaluated. The test results validate the actuator analysis and design.

Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current

  • Pourreza, Tayyeb;Alijani, Ali;Maleki, Vahid A.;Kazemi, Admin
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.481-491
    • /
    • 2021
  • Graphene Nanosheets play an important role in nanosensors due to their proper surface to volume ratio. Therefore, the main purpose of this paper is to consider the nonlinear vibration behavior of graphene nanosheets (GSs) under the influence of electromagnetic fields and electrical current create forces. Considering more realistic assumptions, new equations have been proposed to study the nonlinear vibration behavior of the GSs carrying electrical current and placed in magnetic field. For this purpose, considering the influences of the magnetic tractions created by electrical and eddy currents, new relationships for electromagnetic interaction forces with these nanosheets have been proposed. Nonlinear coupled equations are discretized by Galerkin method, and then solved via Runge-Kutta method. The effect of different parameters such as size effect, electrical current magnitude and magnetic field intensity on the vibration characteristics of GSs is investigated. The results show that the magnetic field increases the linear natural frequency, and decreases the nonlinear natural frequency of the GSs. Excessive increase of the magnetic field causes instability in the GSs.

Design and Fabrication of a Low Frequency Vibration Driven High-Efficiency Electromagnetic Energy Harvester (저 주파수용 FR-4 스프링 기반 고효율 진동형 전자기식 에너지 하베스터의 설계 및 제작)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.298-302
    • /
    • 2012
  • This paper describes the design and fabrication of a low frequency vibration driven high-efficiency electromagnetic energy harvester based on FR(Flame Resistance)-4 spring which converts mechanical energy into useful electrical power. The fabricated generator consists of a vertically polarized NdFeB permanent magnet attached to the center of spring and a planar type copper coil which has higher efficiency compare with cylindrical type coil. ANSYS finite analysis and Matlab were used to determine the resonance frequency and output power. The generator is capable of producing up to 1.36 $V_{pp}$ at 9 Hz, which has the maximum power of 639 ${\mu}W$ with a load resistance of $3.25k{\Omega}$.

Development of Electromagnetic Active Engine Mount (전자식 능동 엔진 마운트 개발)

  • Hong, Sung-Woo;Lee, Ho-Chul;Choi, Sang-Min;Kim, Jeong-Hoon;Lee, Dong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.280-281
    • /
    • 2008
  • In pursuit of decreasing noise and vibration, the electromagnetic active control mount(ACM) is developed which is corresponding with the tendency of greater fuel efficiency, higher engine power and lower lightweight vehicle. In process of developing the ACM, making patent searches and benchmarking are performed first, and then robust mount design which is reflected on the users' demand through Design For Six Sigma(DFSS) is carried out. The manufactured prototype of ACM is tested in various environmental conditions for the purpose of ensuring the performance quantitatively.

  • PDF