• Title/Summary/Keyword: electromagnetic transient

Search Result 287, Processing Time 0.021 seconds

Analysis of Electromagnetic Field by moving metal particle in GIS using SNM (공간회로망법을 이용한 GIS내의 움직이는 도체이물질에 대한 전자계 해석)

  • Lim, Y.L.;Park, K.S.;Choi, Y.L.;Choi, C.Y.;Ko, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1670-1672
    • /
    • 2001
  • In compared with air insulated switchgear GIS has a high efficiency and confidence. Insulation method using $SF_6$ gas has a very excellent insulation characteristics for high voltage equipment but has a characteristics that insulation heredity is changed for internal unequal electric field. So analysis of electromagnetic field in GIS is very important basic data for structure design and trouble diagnosis process. In compared with established method, SNM in this paper observes variation of the electromagnetic field with real time and get result very similar to measurement. In order to know the variation of electromagnetic field distribution for transient response for time and position, variations are observed when metal particles are moving fast.

  • PDF

Development of EMC Filter In the High Powered Breaker

  • Kim, Eun-Mi;Jeon, Mi-Hwa;Kim, Dong-Il;Ahn, Young-Sup
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 2009
  • Remarkable developments in the electric and electronic industry have given people's daily life much more convenience and abundance. However, in electrical communication, or electric and electronic fields, making electrical and electronic devices more functional, more integrated, and faster have put electromagnetic interference(EMI) into more complex forms, and lots of problems such as interruption, malfunction, or interference by noise between electrical communication systems occurs every day. In this research, the electromagnetic compatibility(EMC) filter in the high powered breaker was designed and fabricated as a counter measure. The filter attenuated noise more than 20${\sim}$50 dB in the range of 10 MHz${\sim}$1.5 GHz. And, when the electric fast transient(EFT) of 4 kV in the level 4 of IEC 61000-4-4 was induced, it was soon suppressed to 600 V.

Thin Sheet Metal Forming Process Analysis and Formability Evaluation using Electromagnetic Force (전자기력을 이용한 박판 성형 공정 해석 및 성형성 평가)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.387-390
    • /
    • 2008
  • Electromagnetic forming (EMF) technology, which is one of the high speed forming methods, has been used for the forming process in various industry fields. Numerical approach by finite element simulation of the EMF process is presented in this study. The implicit code is used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. In addition, the body forces generated in the workpiece are used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit code. Numerical approach for a dimpled shape by EMF process is carried out and the simulated results of the dimpled shape by EMF are reviewed in view of the deformed shape and formability evaluation.

  • PDF

A Study on Torque and Speed Control of Three Phase Induction Motor (3상(相) 유도전동기(誘導電動機)의 토크 및 속도제어(速度制御)에 관한 연구(硏究))

  • Choi, K.H.;Jeong, S.K.;Yang, J.H.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.7 no.1
    • /
    • pp.111-126
    • /
    • 1995
  • In general, the electromagnetic transient phenomenon always exists in induction motor(IM) with the torque change. The control performance of IM is very worse than that of D.C motor owing to this transient phenomenon. So many studies about the elimination methods of the transient phenomenon have been making progress. Interesting methods of them are the Field acceleration method(FAM) and the method of impulse addition on the input voltage at the time point of torque change. In this paper, first, the circuit equation of IM is derived from the phase segregation method. The torque equation consisted of the stator and rotor currents is derived from the solving of the circuit equation. As we well known, the transient terms exist in this the torque equation. The method of impulse addition on the input voltage at the instance of torque change is confirmed theoretically for the elimination of the transient phenomenon. With the base on it, the author proposed a real time algorithm to eliminate the transient terms. The control system is consisted of the PI controller with the feedforward of torque change. The author could confirm that the quick stepwise responses of torque and speed can be obtained from response simulations.

  • PDF

A Stable MOT Scheme with Combined Field Integral Equation for the Analysis of Transient Scattering from Conducting Structure (도체 구조물의 과도 산란 해석을 위한 결합 적분방정식의 안정된 MOT 기법)

  • Lee, Chang-Hwa;An, Ok-Kyu;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, a stable marching-on in time(MOT) method with a time domain combined field integral equation(CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time domain electric field integral equation(EFIE) with the magnetic field integral equation(MFIE). The time derivatives in the EFIE and MFIE are approximated using a central finite difference scheme and other terms are averaged over time. This time domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. Numerical results with the proposed MOT scheme are presented and compared with those obtained from the conventional method and the inverse discrete Fourier transform(IDFT) of the frequency domain CFIE solution.

A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis (시간영역 전자기파 전파해석을 위한 유한요소기반 PML 기법)

  • Yi, Sang-Ri;Kim, Boyoung;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • This paper presents a new formulation for transient simulations of microwave propagation in heterogeneous unbounded domains. In particular, perfectly-matched-layers(PMLs) are introduced to allow for wave absorption at artificial boundaries used to truncate the infinite extent of the physical domains. The development of the electromagnetic PML targets the application to engineering mechanics problems such as structural health monitoring and inverse medium problems. To formulate the PML for plane electromagnetic waves, a complex coordinate transformation is introduced to Maxwell's equations in the frequency-domain. Then the PML-endowed partial differential equations(PDEs) for transient electromagnetic waves are recovered by the application of the inverse Fourier transform to the frequency-domain equations. A mixed finite element method is employed to solve the time-domain PDEs for electric and magnetic fields in the PML-truncated domain. Numerical results are presented for plane microwaves propagating through concrete structures, and the accuracy of solutions is investigated by a series of error analyses.

Characteristics of the Electric and Magnetic Field Waveforms Radiated by Lightning Discharges (뇌방전에 의해 방사되는 전계와 자계파형의 특성)

  • 이복희;이경옥
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.300-309
    • /
    • 1996
  • The electric and magnetic fields radiated by lightning discharges are significantly changeable in amplitude and time, one of the topics concerning electromagnetic compatibility of modern electronic systems is the efficient and economic protection against transient voltages caused by not only by direct but also by nearly lightning strokes. In this paper, in order to obtain the detailed informations about lightning electromagnetic impulse waveforms, the electric and magnetic fields radiated by lightning discharges in the summer of 1995 were measured by a fast electric antenna and a loop-type magnetic field sensor, and their charac- teristics were presented and analyzed. The signals of the electric and magnetic fields were re- corded continuously by a transient digitizer having a resolution of 12 bit and a memory capacity of 5000 point and using a sampling time of 200 ns. The electric and magnetic field waveforms associated with lightning return strokes are significantly different with those of intracloud discharges. The magnetic fields radiated by intracloud lightning discharges have essentially the same waveforms as the electric field when the lightning discharhes are at distance of 50 km or more. Also the main frequency components of the electric and magnetic fields radiated by lightning discharges range from a few kHz to several hundred kHz.

  • PDF

An Adaptive Reclosing Algorithm Considering Distributed Generation

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.651-659
    • /
    • 2008
  • Autoreclosing techniques have been used in power systems to maintain system stability and continuity of supply. Environmental and economical issues have driven significant increases in the development of distributed generation (DG). DG connected to distribution systems, however, may impose negative influences with respect to power quality, protection, and stability, because DG can cause some challenges to protection, especially to reclosing. For this reason, in order to improve the reliability and safety of the distribution system, the rules and guidelines suggest that the DG system needs to be rapidly disconnected from the system before reclosing. We present, in this paper, an adaptive reclosing algorithm considering the DG. The algorithm consists of an angle oscillation's judgment, the emergency extended equal-area criterion (EEEAC), the calculation of an optimal reclosing time, and a reconnection algorithm. Our simulation results for three different DG technologies with Electromagnetic Transient Program (EMTP) indicate that we can maintain transient stability while the DG is protected against disturbances.

A study on the sensor for measuring the transient electric fields (시변성(時變性) 전계(電界) 측정용(測定用) 센서에 관한 연구)

  • Lee, Bok-Hee;Paek, Yong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.318-321
    • /
    • 1991
  • For measuring the transient electromagnetic fields and related quantities created by disconnector operations in GIS, one needs the wide bandwidth sensors with simple transfer functions. This paper describes a new developed electric field sensor to measure the very fast transient electric fields and voltages, and the measuring principle, design and construction of planar electric field sensor are described. A calibration and/or correction technique of the sensor is investigated which enables an accurate determination of the sensor response to the time-changing electric fields. As a consequence, the low voltage calibrations certify that a rise time of 1.7 [ns] is achieved for the planar electric field sensor and a total bandwidth extending from several Hz to 200 MHz for the measuring system which presents the constant division ratio as a function of frequency.

  • PDF

Transient Analysis of Conducting Wire Antennas Using Laguerre Polynomials (라게르 함수를 이용한 도선 안테나의 과도해석)

  • Kim, Hyung-Jin;Kim, Chung-Soo;Park, Jae-Kwon;Jung, Baek-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.266-269
    • /
    • 2003
  • In this work, a new formulation is presented for analyzing the transient electromagnetic response from wire antennas using the time-domain integral equation. The solution method is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Piecewise triangle basis functions have been used for spatial expansion functions for arbitrarily shaped wire structures. The time-domain variation is approximated by a set of orthonormal basis functions that are derived from the Laguerre polynomials. The method presented in this paper results in very stable transient responses from wire antennas.

  • PDF