• Title/Summary/Keyword: electromagnetic radiation

Search Result 847, Processing Time 0.028 seconds

Coupling through a narrow slit in a parallel-plate waveguide covered by a dielectric slab with a conducting strip on the slab (유전체 슬랩으로 덮힌 평행평판 도파관의 좁은 슬릿을 통한 슬랩 위의 도체 스트립과의 결합)

  • Lee, Jong-Ik;Hong, Jae-Pyo;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.68-74
    • /
    • 2000
  • The problem of electromagnetic coupling through a narrow slit in a parallel-plate waveguide(PPW) covered by a dielectric slab with a conducting strip on the slab is considered for the case that the TEM wave is incident in the PPW. Coupled integral equations for the tangential electric field in the slit and the induced current over the strip are derived and solved numerically by use of the method of moments. In order to show the effect of the conducting strip on the coupling, some numerical results for the reflected and transmitted powers in the guide, the coupled power through the slit, the equivalent slit admittance, and radiation pattern are presented. From the results, it is observed that the maximum available power coupled through the slit exterior to the PPW amounts upto 50% of the incident power in the PPW.

  • PDF

A Study on Rekeying and Sponged-based Scheme against Side Channel Attacks (부채널 공격 대응을 위한 Rekeying 기법에 관한 연구)

  • Phuc, Tran Song Dat;Lee, Changhoon
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.579-586
    • /
    • 2018
  • Simple Power Analysis(SPA) and Differential Power Analysis(DPA) attacks are Side Channel Attacks(SCA) which were introduced in 1999 by Kocher et al [2]. SPA corresponds to attacks in which an adversary directly recovers key material from the inspection of a single measurement trace (i.e. power consumption or electromagnetic radiation). DPA is a more sophisticated attacks in which the leakage corresponding to different measurement traces (i.e. different plaintexts encrypted under the same key) is combined. Defenses against SPA and DPA are difficult, since they essentially only reduce the signal the adversary is reading, PA and DPA. This paper presents a study on rekeying and sponged-based approach against SCA with current secure schemes. We also propose a fixed ISAP scheme with more secure encryption and authentication based on secure re-keying and sponge functions.

A Candidate of KVN KSP: Origins of Gamma-ray flares in AGNs

  • Lee, Sang-Sung;Kang, Sincheol;Han, Myoung-Hee;Algaba-Marcos, Juan-Carlos;Byun, Do-Young;Kim, Jeong-Sook;Kim, Soon-Wook;Kino, Motoki;Trippe, Sascha;Wajima, Kiyoaki;Miyazaki, Atsushi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.113.1-113.1
    • /
    • 2014
  • We propose a three-year Key Science Program (KSP) consisting of VLBI monitoring observations and single dish (SD) rapid response observations (RRO). The VLBI monitoring observations are comprised of ten 24-hr observations per year (every month) of about 30 gamma-ray brigt active galactic nuclei (AGNs) with Korea VLBI Network (KVN) at 22, 43, 86, and 129 GHz. The SD RROs may consist of twelve 7-hr observations per source (every week for 3 months after triggering) of gamma-ray flaring sources with two KVN SD telescopes at 22, 43, and 86 GHz in dual polarization. We expect one or two sources per year for the SD RROs. Gamma-ray flares of AGNs are known to be occured in innermost regions of relativistic jets which radiate in whole ranges of electromagnetic spectra due to synchrotron radiation, syschrotron self absorption, inverse-compton scttering, doppler boosting etc. Possible explanations of the gamma-ray flares in AGNs are a) shocks-in-jets propagating within jet flow and b) bending of the whole jets. For both cases, we should expect changes in polarization, luminosity, particle distribution, and structures of jets at mas-scale. The multifrequency simultaneous VLBI/SD observations with KVN are the best tool for detecting such changes correlated with gamma-ray flares. This KSP proposal aims to answer the fundamental questions about the basic nature of the flares of AGNs.

  • PDF

Integrative Modeling of Wireless RF Links for Train-to-Wayside Communication in Railway Tunnel

  • Pu, Shi;Hao, Jian-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • In railway tunnel environment, the reliability of a high-data-rate and real-time train-to-wayside communication should be maintained especially when high-speed train moves along the track. In China and Europe, the communication frequency around 900 MHz is widely used for railway applications. At this carrier frequency band, both of the solutions based on continuously laid leaky coaxial cable (LCX) and discretely installed base-station antennas (BSAs), are applied in tunnel radio coverage. Many available works have concentrated on the radio-wave propagation in tunnels by different kinds of prediction models. Most of them solve this problem as natural propagation in a relatively large hollow waveguide, by neglecting the transmitting/receiving (Tx/Rx) components. However, within such confined areas like railway tunnels especially loaded with train, the complex communication environment becomes an important factor that would affect the quality of the signal transmission. This paper will apply a full-wave numerical method to this case, for considering the BSA or LCX, train antennas and their interacted environments, such as the locomotive body, overhead line for power supply, locomotive pantograph, steel rails, ballastless track, tunnel walls, etc.. Involving finite-difference time-domain (FDTD) method and uni-axial anisotropic perfectly matched layer (UPML) technique, the entire wireless RF downlinks of BSA and LCX to tunnel space to train antenna are precisely modeled (so-called integrative modeling technique, IMT). When exciting the BSA and LCX separately, the field distributions of some cross-sections in a rectangular tunnel are presented. It can be found that the influence of the locomotive body and other tunnel environments is very significant. The field coverage on the locomotive roof plane where the train antennas mounted, seems more homogenous when the side-laying position of the BSA or LCX is much higher. Also, much smoother field coverage solution is achieved by choosing LCX for its characteristic of more homogenous electromagnetic wave radiation.

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

Prediction of coal and gas outburst risk at driving working face based on Bayes discriminant analysis model

  • Chen, Liang;Yu, Liang;Ou, Jianchun;Zhou, Yinbo;Fu, Jiangwei;Wang, Fei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.73-82
    • /
    • 2020
  • With the coal mining depth increasing, both stress and gas pressure rapidly enhance, causing coal and gas outburst risk to become more complex and severe. The conventional method for prediction of coal and gas outburst adopts one prediction index and corresponding critical value to forecast and cannot reflect all the factors impacting coal and gas outburst, thus it is characteristic of false and missing forecasts and poor accuracy. For the reason, based on analyses of both the prediction indicators and the factors impacting coal and gas outburst at the test site, this work carefully selected 6 prediction indicators such as the index of gas desorption from drill cuttings Δh2, the amount of drill cuttings S, gas content W, the gas initial diffusion velocity index ΔP, the intensity of electromagnetic radiation E and its number of pulse N, constructed the Bayes discriminant analysis (BDA) index system, studied the BDA-based multi-index comprehensive model for forecast of coal and gas outburst risk, and used the established discriminant model to conduct coal and gas outburst prediction. Results showed that the BDA - based multi-index comprehensive model for prediction of coal and gas outburst has an 100% of prediction accuracy, without wrong and omitted predictions, can also accurately forecast the outburst risk even for the low indicators outburst. The prediction method set up by this study has a broad application prospect in the prediction of coal and gas outburst risk.

Bent slot loop antenna for the dual band wireless LAN (이중대역 무선 랜용 굴곡형 슬롯 루프 안테나)

  • Lee, Young-Soon;Im, Seong-Gyun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, Coplanar waveguide(CPW)-fed slot loop antenna, which is applicable to the dual band(2.4GHz~2.4835GHz, 5.15GHz~5.825GHz) for the wireless LAN, is proposed. In order to miniaturize the proposed antenna, slot loop is bent by meandering. The resonant frequencies in the required dual band are adjusted by variation of the resonant length of slot loop as well as slot width. In particular, use of capacitive coupling CPW feed provides impedance matching without a seperate matching circuit, because the amount of electromagnetic coupling can be controlled by the offset between feed and radiator. As a result, it has been observed that the proposed antenna satisfies not only the required return loss(${\leq}10dB$) but also has high efficiency(${\geq}80%$) over the whole frequency band. In order to check the validity of the proposed antenna, some simulated results for return loss and radiation pattern are presented in comparison with the measured results.

Different Analysis of b2 Peaks in SERS Spectra of 4-aminobenzenethiol

  • Choe, Han-Gyu;Son, Hyeon-Gyeong;Yu, Hyeon-Ung;Lee, Tae-Geol;Kim, Ji-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.257-258
    • /
    • 2012
  • The SERS spectra of 4-aminobenzenethiol (ABT) have served as the "probe" molecule, which have helped spectroscopists to build up the electromagnetic (EM) and chemical (CHEM) enhancement mechanisms. In particular, the b2-peaks (9b, 3, and 19b) of the SERS spectra of ABT have been attributed to arise from the vibronic charge-transfer (CT) between Au or Ag surface and the ABT. Quite recently, however, Tian and co-workers [1] claimed that the b2-peaks are not the CT-enhanced spectra of ABT. Instead, these peaks arise from the 4,4'-dimercaptoazobenzenes (DMABs) that are produced by the oxidative coupling of two ABTs. Their claim is under intense debate currently. Herein, we studied spatially and temporally resolved SERS spectra of ABTs on Ag thin film (thickness of 10 nm), to investigate such claim. Herein, we present a series of additional evidences that strongly support that the b2 intensities of ABTs do not arise from the CT-enhancement: (1) the b2-peaks can be locally "activated" (i. e. turned on) irreversibly with focused laser radiation; (2) the TOF-SIM spectrometry on the activated region show depletion of ABT-Ag+ ions; and finally (3) the spatially resolved FT-IR spectra of the activated region show two pronounced peaks at 1377 cm-1 and 1460 cm-1, both of which can be assigned to the stretching mode of N=N bond. While the result does not disprove the existence of CT or CHEM enhancement in general, the results do show that previous interpretations of the spectra of ABTs should be re-interpreted.

  • PDF

Optimum Missile Attitude to Minimize Radar Exposure at a High Altitude (고고도에서의 피탐성 최소화 유도탄 최적자세 연구)

  • Moon, Kyujin;Jeong, Ui-Taek;Kim, JeongHun;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.865-873
    • /
    • 2019
  • To improve the survivability of a missile, it needs to be lowered that the detection possibility by radars on the ground. The radar exposure of the target is given as a function of relative distance from the radar to the target and RCS (Radar Cross Section). The RCS of the missile is determined by the incidence angle of the target to electromagnetic radiation emitted from the radar. Under the assumption that the missile equips appropriate attitude control system, the attitude of the missile to minimize radar exposure at a high altitude is investigated in this paper. Two different types of performance cost are considered: the total sum of RCS and the total sum of SNR during the flight. Optimal solutions against multiple ground radars are found by using a SQP (Sequential Quadratic Programming)-based optimization technique.

Design of Thomson Scattering System Using VPH Grating for Plasma Processing

  • Joa, Sang-Beom;Ko, Min-Guk;Kang, In-Je;Yang, Jong-Keun;Yu, Yong-Hun;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.525-525
    • /
    • 2013
  • Low temperature plasma diagnosis is one of the big issues in laboratory scale or processing industry. One of the most powerful techniques of plasma diagnostics is the use of the scattering of electromagnetic radiation from the plasma. Electron temperature and density are important parameters for understanding the information of plasmas in the plasma processing industry. Laser scattering experiments on plasma can provide a substantial amount of information about plasma parameters such as the electron density ne, the electron temperature Te, and the neutral density nn and temperature Tn. Thomson scattering spectroscopy is used several method, in accordance with detector type. Commonly, Thomson scattering is used several notch filter to separate expanded wavelength. Since using a spectrometer with surface relief grating or notch filter, the system of the measurement will be complicated and bigger. In this study, using VPHG (Volume Phase Holographic Grating) in order to install the simple and cheap system. VPHG has the advantage of the system installation, because it can be Transmission Type. The diffraction efficiency and dispersion angle of VPHG is higher than the surface relief grating relatively. For a wavelength and bandwidth selection, Using a slit or mask to select a rejection wavelength instead of notch filter.

  • PDF