• Title/Summary/Keyword: electromagnetic fields

Search Result 633, Processing Time 0.021 seconds

Managing Technological Risk and Risk Conflict : Public Debates on Health Risks of Mobile Phones EMF (기술위험 관리와 위험갈등 : 휴대전화 전자파의 인체유해성 논란)

  • Jung, Byung-Kul
    • Journal of Science and Technology Studies
    • /
    • v.8 no.1
    • /
    • pp.97-129
    • /
    • 2008
  • We are living in the time of high probability of technological risk due to increased rate of technology development and diffusion of new technologies. Resolving uncertainties, the basic attribution of risk, by accumulating knowledge over the risk factors of certain technology is critical to management of technological risk. In many cases of technological risks, high uncertainty of knowledge is commonly mentioned reason for public controversies on risk management. However, the type of technological risk with low social agreement and low uncertainty of knowledge, the main reason for public controversy is absence of social agreement. Public debates on the risks of mobile phones electromagnetic fields(EMF) to human health comes under this category. The knowledge uncertainty on human health effect of mobile phones EMF has been lowered increasingly by accumulating enormous volume of knowledge though scientists have not reached a final conclusion whether it pose a risk to the physical and mental health of the general population or not. In contrast with civil organizations calling for precautionary approach based regulation, the mobile phone industry is cling to the position of no-regulation-needed by arguing no clear evidence to prove health risks of mobile phone EMF has found. In Korea, government set exposure standards based on a measurement called the 'specific absorption rate'(SAR) and require the mobile phone industry to open SAR information to the public by their own decision. From the view of pro-regulation side based on precautionary approach, technology risk managament of mobile phones EMF in Korea is highly limited and formalized one with limited measuring of SAR on head part only and problematic self-regulated opening of information about SAR to the public. As far as the government keeps having priority on protecting interest of mobile phone industry over precautionary regulation of mobile phones EMF, the disagreement between civil organizations and the government will not resolved. The risk of mobile phones EMF to human health have high probability of being underestimated in the rate and damage of risk than objectively estimated ones due to familiarity of mobile phone technology. And this can be the cause of destructive social dispute or devastating disaster. To prevent such disastrous results, technology risk management, which integrating the goals of safety with economic growth in public policy and designing and promoting risk communication, is required.

  • PDF

A Study on the Application Direction of Finite Element Analysis in the Field of Packaging through Research Trend Analysis in Korea (국내 연구 동향 분석을 통한 포장분야에서 유한요소해석의 적용 방향에 관한 고찰)

  • Lee, Hakrae;Jeon, Kyubae;Ko, Euisuk;Shim, Woncheol;Kang, Wookgun;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.191-200
    • /
    • 2017
  • Proper packaging design can meet both the environmental and economic aspects of packaging materials by reducing the use of packaging materials, waste generation, material costs, and logistics costs. Finite element analysis(FEM) is used as a useful tool in various fields such as structural analysis, heat transfer, fluid motion, and electromagnetic field, but its application in the field of packaging is still insufficient. Therefore, the application of FEM to the field of packaging can save the cost and time in the future research because it is possible to design the package by computer simulation, and it is possible to reduce the packaging waste and logistics cost through proper packaging design. Therefore, this study investigated the FEM papers published in Korea for the purpose of helping research design using FEM program in the field of packaging in the future. In this paper, we analyzed the 29 papers that were directly related to the analysis of FEM papers published in domestic journals from 1991 to 2017. As a result, we analyzed the research topic, FEM program, and analysis method using each paper, and presented the direction that can be applied in future packaging field. When the FEM is applied to the packaging field, it is possible to change the structure and reduce the thickness through the stress and vibration analysis applied to the packaging material, thereby reducing the cost by improving the mechanical strength and reducing the amount of the packaging material. Therefore, in the field of packaging research in the future, if the FEM is performed together, economical and reasonable packaging design will be possible.

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.