• Title/Summary/Keyword: electrolyzed water(EW)

Search Result 29, Processing Time 0.021 seconds

A Study on Electrostatic Discharging in Ultrapure and Electrolyzed Waters Using Kelvin's Thunderstorm Effect (캘빈방전 효과를 이용한 초순수 및 전해이온수의 정전기 방전 연구)

  • Kim, Hyung-won;Jung, Youn-won;Choi, In-sik;Choi, Byung-sun;Choi, Donghyeon;Ryoo, Kun-kul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.5-11
    • /
    • 2022
  • Despite the increasing importance of manufacturing and application R&D for ultrapure deionized water and electrolyzed ion water, various and systematic studies have not been conducted until now. In this study, the electrostatic discharge (ESD) behavior of electrolyzed ion water using a proton exchange membrane(PEM) was evaluated according to the type, flow rate, and bubble of electrolyzed ion water. In addition, by observing that Oxidation Reduction Potential (ORP) value returns to the unique value of electrolyzed ion water after electrostatic discharge, the possibility of two types of ions participating in electrostatic discharge ((H2O)n+ (assumed)) and ions for maintaining the characteristics of electrolyzed water could be inferred. In order to confirm the chemical structure and characteristics of the cations, in-depth research related to water molecular orbital energy or band gap should be followed.

Effects of Electrolyzed Water and Chlorinated Water on Sensory and Microbiological Characteristics of Lettuce (양상추의 관능적 및 미생물학적 특성에 전해수 및 염소수가 미치는 영향)

  • Lee Seung-Hyun;Jang Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.20 no.6 s.84
    • /
    • pp.589-597
    • /
    • 2004
  • This study was conducted to investigate the effects of various kinds of electrolyzed and chlorinated waters on the sensory and microbiological qualities of fresh-cut lettuce and to determine the most suitable electrolyzed water for the vegetable dishes, without heat treatment, at institutional foodservices. The sensory evaluation resulted in higher scores on the 1st-day of storage for the EW-1 (diaphragm type 1) and EW-3 (non-diaphragm type) compared to that for EW-2 (diaphragm type 2), with regard to their appearance, discoloration, texture, taste and overall acceptability characteristics. However, over time, EW-3 ranked highest, with a score of 8.00 (very like), on the 4th-day of storage, which maintained the highest level up to the 7th-day of storage, at which time the score was 7.00 (fairly like). The CW (chlorinated Water) had a significantly lower score, due to the smell of chlorine, although there was no concern with relation to chlorine residue from the electrolyzed waters. Microbial examinations of the total plate count revealed that immersing lettuce into EW-3 brought about l/3,000 to 1/30,000 reductions in the microbial counts of the TW treatment or untreated samples for up to seven days of storage. The CW treatment gave a 1/10 reduction in the microbial counts compared with the TW (tap water) treatment. The coliform bacterial counts also showed similar trends to those of the total plate count values. With regards to the psychotropic bacterial count, EW-3 was able to result in as much as a 1/30,000 reduction in the initial counts. As vegetable dishes, such as salad, can not be heat-sterilized, the utilization of EW-3 for the preparation of vegetable dishes without heat treatment will be an excellent choice to improve the critical control point in production state as a new effective means for sanitizing management.

Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water (화학양면성의 전해이온수를 이용한 극자외선 마스크의 나노세정)

  • Ryoo, Kun-kul;Jung, Youn-won;Choi, In-sik;Kim, Hyung-won;Choi, Byung-sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.34-42
    • /
    • 2021
  • Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.

Comparison of Quality Characteristics of Sesame leaf Cleaned with Various Electrolyzed Water during Storage (다양한 전기분해수 세정처리에 따른 깻잎의 저장중 품질특성 비교)

  • Jeong Jin-Woong;Kim Jong-Hoon;Kwon Kee-Hyun
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.558-564
    • /
    • 2005
  • This study was carried out to investigate the cleaning effect of sesame leaf, the sterilization effect and physicochemical properties, treated with various electrolyzed water. Initial physicochemical properties could be kept more than 1 month in electrolyzed oxidizing water(EW-1) of diaphragm type and 15 days in electrolyzed water(EW-2 and EW-3) of non-diaphragm system, there was no significant difference by storage temperature. 4 kinds of microorganism (initial total counts, $10^7\~10^9$ CFU/mL) were sterilized within $0.5\~1$ minutes by electrolyzed water. In fresh sesame leaves, total viable cell count and coliform group in the treatment of electolyzed water were decreased to about $2\~3$ log scale comparing non-treated ones. Especially Bacillus cereus was not detected until 13th day when treated with EW-l. Decaying ratio of sesame leaf appears on day 6 of storage in the untreated but the treatments of electrolyzed water has no sign until day 10 of storage. Change in color difference(${\Delta}E$) during storage was observed the treatments of electrolyzed low-alkaline water(EW-2) and electrolyzed neutral water(EW-3) were very desirable at the level $1\~2$ after day 13 of storage comparative to the untreated Change of Chlorophyll content was biggest decreased to 6.8 $mg\%$ on the untreated and decreased least to 8.35 $mg\%$ on EW-3 treated group on 13th day from initial value of $9.0\~10.3\;mg\%$ The overall sensory evaluation appeared most acceptable in the treatments of EW-2 and EW-3.

Removal Effects of Microorganism and Pesticide Residues on Chinese Cabbages by Electrolyzed Water Washing (전기분해수 세척에 따른 배추의 미생물 및 잔류농약 제거효과)

  • Sung, Jung-Min;Park, Kee-Jai;Lim, Jeong-Ho;Jeong, Jin-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.628-633
    • /
    • 2012
  • This study investigated the washing efficiency of electrolyzed water for the removal of microorganisms and pesticide residues from Chinese cabbage. Initial total bacteria and coliform counts were 6.64 and 3.56 log cfu/g respectively. After washing, total bacteria count of tap water (TW) were 5.97 log cfu/g and low alkaline electrolyzed water (LAlEW) and strong acidic electrolyzed water (SAcEW) were 1.63-4.67 log cfu/g. Especially SAcEW-100 was found to the most effective method of washing the cabbages. After washing, the coliform count was dramatically reduced. The removal rate of pesticide residues by NaClO treatment (36.93-50.13%) was greater than that of TW treatment (32.28-38.46%). The removal rate of LAlEW-100 and SAcEW-100 was 63.79 and 78.30% respectively, and was higher than those of TW and NaClO treatments. The vitamin C content of the Chinese cabbages after all treatments did not differ significantly. Consequentially, the electrolyzed water was found to be effective to remove bacteria and pesticide residues from Chinese cabbage without affecting quality.

Sterilization Efficacy of Washing Method Using Based on Microbubbles and Electrolyzed Water on Various Vegetables (다양한 채소류에서 마이크로버블 및 전기분해수의 세척 살균 효과)

  • Lee, Woon-Jong;Lee, Chang-Hyun;Yoo, Jae-Yeol;Kim, Kwang-Yup;Jang, Keum-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.912-917
    • /
    • 2011
  • The sterilization efficacies of various washing solutions on the surfaces of vegetables such as sesame leaves, lettuce, and mini-cabbage were investigated. The washing solutions were tap water (TW), microbubble water (MB), electrolyzed water (EW), and microbubble electrolyzed water (MB+EW). After Escherichia coli and Bacillus cereus were artificially inoculated onto the surfaces of vegetables, each vegetable was washed for 1, 3, and 5 min with TW, MB, EW 100 (100 mg/L of available chlorine), EW 200 (200 mg/L of available chlorine), MB+EW 100, and MB+EW 200. The washing efficacy of MB was slightly higher than that of TW, and EW was more effective than MB (p<0.05). In all instances, the sterilization efficacies of MB+EW 100 and MB+EW 200 were higher than those of EW 100 and EW 200 (p<0.05). Thus, MB+EW offers an effective means of reducing the studied microorganisms in a short time period. The MB+EW washing method provides microbial reduction on the surfaces of various vegetables and enhances the microbiological safety of the vegetables.

Disinfection Effects of Electrolyzed Water on Strawberry and Quality Changes during Storage (전기분해수 처리에 의한 딸기의 살균 효과 및 저장 중 품질변화)

  • Jeong Jin-Woong;Kim Jong-Hoon;Kwon Ki-Hyun;Park Kee-Jai
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.316-321
    • /
    • 2006
  • Disinfection of electrolyzed water (EW) on strawberry by immersion washing and quality changes during storage at $5^{\circ}\C$ was compared with one immersed in chlorine water and not treated. Total count of strawberry washed with EW by immersion in 10 volumes of EW for 20 min was decreased to about 2 log cycle compared to the untreated And rate of microbial growth during storage was lower than ethers. Decaying ratio in strawberry treated with electrolyzed low-alkalinewater (EW-2) showed lower as of 10% level after 5 days of storage compared) to the untreated and the treated with chlorine water (CW). Hardness in the treatment of EW was not changed significantly until 3 days of storage, after then rather increased. Change in surface color of strawberries was observed; L value in the CW treated and the untreated increased whereas it decreased in the treatment of EW. And color difference(${\Delta}E$) during storage was observed the lowest in the untreated until 3 days of storage. The initial value of residual chlorine in the treatment of EW was at the level of $0.04{\sim}0.06ppm$, and $1{\sim}3$ days later showed almost the equal value to level of $0.02{\sim}0.03ppm$ in all treatments. Sensory characteristic during storage was preferable on strawberry washed with EW (EW-1 and EW-2) to the other treatments.

Electrolyzed water as an alternative for environmentally-benign semiconductor cleaning chemicals

  • Ryoo, Kunkul;Kang, Byeongdoo
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning technology which consumes vast amounts of chemicals and ultra pure water(UPW) and is the high temperature process. Therefore, this technology gives rise to the many environmental issues, and some alternatives such as electrolyzed water(EW) are being studied. In this work, intentionally contaminated Si wafers were cleaned using the electrolyzed water. The electrolyzed water was generated by an electrolysis system which consists of three anode, cathode, and middle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case of NH4Cl electrolyte, the oxidation-reduction potential and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.8, and -750mV and 10.0, respectively. AW and CW were deteriorated after electrolyzed, but maintained their characteristics for more than 40 minutes sufficiently enough for cleaning. Their deterioration was correlated with CO2 concentration changes dissolved from air. Contact angles of UPW, AW, and CW on DHF treated Si wafer surfaces were measured to be $65.9^{\circ}$, $66.5^{\circ}$ and $56.8^{\circ}$, respectively, which characterizes clearly the eletrolyzed water. To analyze the amount of metallic impurities on Si wafer surface, ICP-MS was introduced. It was known that AW was effective for Cu removal, while CW was more effective for Fe removal. To analyze the number of particles on Si wafer surfaces, Tencor 6220 were introduced. The particle distributions after various particle removal processes maintained the same pattern. In this work, RCA consumed about $9{\ell}$ chemicals, while EW did only $400m{\ell}$ HCl electrolyte or $600m{\ell}$ NH4Cl electrolyte. It was hence concluded that EW cleaning technology would be very effective for promoting environment, safety, and health(ESH) issues in the next generation semiconductor manufacturing.

  • PDF

Understanding Behaviors of Electrolyzed Water in Terms of Its Molecular Orbitals for Controlling Electrostatic Phenomenon in EUV Cleaning (EUV 세정에서 정전기 제어를 위한 전해이온수 거동의 분자궤도 이해)

  • Kim, Hyung-won;Jung, Youn-won;Choi, In-sik;Choi, Byung-sun;Kim, Jae-young;Ryoo, Kun-kul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.6-13
    • /
    • 2022
  • The electrostatic phenomenon seriously issued in extreme ultraviolet semiconductor cleaning was studied in junction with molecular dynamic aspect. It was understood that two lone pairs of electrons in water molecule were subtly different each other in molecular orbital symmetry, existed as two states of large energy difference, and became basis for water clustering through hydron bonds. It was deduced that when hydrogen bond formed by lone pair of higher energy state was broken, two types of [H2O]+ and [H2O]- ions would be instantaneously generated, or that lone pair of higher energy state experiencing reactions such as friction with Teflon surface could cause electrostatic generation. It was specifically observed that, in case of electrolyzed cathode water, negative electrostatic charges by electrons were overlapped with negative oxidation reduction potentials without mutual reaction. Therefore, it seemed that negative electrostatic development could be minimized in cathode water by mutual repulsion of electrons and [OH]- ions, which would be providing excellences on extreme ultraviolet cleaning and electrostatic control as well.

Bactericidal Activity of Electrolyzed Water

  • Park, Sook-Hee;Park, Yoon-Mi;Chang, Dong-Suck;Shin, Il-Shik
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.108-109
    • /
    • 2002
  • Electrolyzed chlorous solutions, or electrolyzed oxidizing water [EW(+)] has attracted much recent attention as a low cost, but high-performance, new technology of potential use by food industry. the term EW(+) is used to describe an aqueous disinfectant produced by the electrolysis of a chlorine containing solution under a low-voltage direct current (Suzuki et al., 2002). (omitted)

  • PDF