• Title/Summary/Keyword: electrolytic reduction water

Search Result 33, Processing Time 0.023 seconds

Potential Reduction and Energy Dispersion Due to Ionization Around the Submerged Ground Rod (수중에 잠긴 접지전극 주변에서의 이온화에 의한 전위저감 및 에너지방출)

  • Choi, Jong-Hyuk;Ahn, Sang-Duk;Yang, Soon-Man;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.92-99
    • /
    • 2009
  • Deeply-driven ground rod in the rainy season may contact with rainwater and ground water. When surge voltages are applied to the submerged ground rods, the ionization around the ground rods are occurred. Ionization in soil and/or water is affected in dynamic performance of ground rod systems. This work aims at studying the transient performance of ground rod system under impulse voltage using scale model in an electrolytic tank. The potential reduction and energy dispersion caused by ionization were treasured and quantitatively analyzed using the Matlab Program. As a result, the peak voltage at the terminal of ground rod was varied with water resistivity and charging voltage of Marx generator. The potential at the terminal of the ground rod was approximately reduced to a half of the applied voltage just below breakdown voltage. Also the energy more than half of the applied energy was dispersed through the ground rod due to ionization just below breakdown voltage.

Reaction Conditions and Mechanism of Electrolytic Reduction of Nitrobenzene (니트로벤젠의 전해환원 반응 조건과 메카니즘)

  • Chon Jung Kyoon;Paik Woon Kie
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.404-412
    • /
    • 1977
  • Electrochemical reduction of nitrobenzene (${\phi}NO_2$) and its derivatives on Pb electrode was studied by means of galvanostatic measurements and coulometric electrolysis in ethanol-water solvent. In acidic solutions phenylhydroxyl amine and aniline ethanol-water solvent. In acidic solutions phenylhydroxyl amine and aniline were produced while nitrosobenzene and coupled products such as azo-and hydrazobenzene were produced in basic solutions. Nitrosobenzene (${\phi}NO$) was not found to be an intermediate in the reduction reactions of ${\phi}NO_2$ in acidic solutions. No direct coupling between ${\phi}NO\;and\;{\phi}NHOH$ was observed to occur in the electrolyte solutions used. Mechanisms of the production of phenylhydroxylamine and nitrosobenzene are deduced from Tafel slope, pH dependence and reaction order with respect to nitrobenzene. Mechanism for the reduction of substituted nitrobenzenes seems to be identical to that of nitrobenzene.

  • PDF

A Study on the Grouting Using a Anti-Swelling of mud stone (미고결된 이암층의 Swelling 방지 그라우팅에 대한 연구)

  • Chun, Byung-Sik;Jung, Kyoung-Sik;Do, Jong-Nam;Lee, Jung-Jae;Kim, Chang-Geun;Kim, Jong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1204-1209
    • /
    • 2006
  • Grouting operate to reinforce expanded clay ground. Cement grouting is one of the most frequently used techniques for underground construction. This work is going to use to add an electrolytic ion to boring water for expanded reduction. To construct underground structures on expanded clay ground is operated pre-grouting that it is the barrier wall previous excavation to prevent an accident. Grouting for early compressive strength development is made a type of suspension. That grouting aims to prevent the swelling magnification in length of time. From now on, grouting is became a type of higher strength suspension to develop early compressive strength.

  • PDF

Synthesis and Physicochemical Properties of Schiff Base Macrocyclic Ligands and Their Transition Metal Chelates

  • Rafat, Fouzia;Siddiqi, K.S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.912-918
    • /
    • 2011
  • Tetraaza Schiff base macrocyclic ligands, $L^1$,$L^2$ and their transition metal chelates have been synthesized and characterized by elemental analyses, IR, electronic, EPR and $^1H$ NMR spectra, TGA and magnetic measurements. The molar conductance of one milli-molar solution of the complexes measured in DMF indicates that the divalent metal complexes are nonelectrolyte while those of trivalent metal ion, are 1:1 electrolytic in the same solvent. The reduction of Racah parameter from the free ion value confirms the presence of considerable covalence of metal ligand sigma bond in the Co(II) and Mn(II) complexes. The EPR spectra of Cu(II) complexes at room temperature shows axial symmetry indicating a $d_x{^2}_{-y}{^2}$ ground state with significant covalent character. The thermal analysis suggests that the complexes do not contain water molecules because only the metal is left as residue.

Removal of Nitrate Nitrogen for Batch Reactor by ZVI Bipolar Packed Bed Electrolytic Cell (영가철 충진 회분식 복극전해조에 의한 질산성 질소 제거)

  • Jeong, Joo Young;Park, Jeong Ho;Choi, Won Ho;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.187-192
    • /
    • 2011
  • Nitrate nitrogen is common contaminant in groundwater aquifers, its concentration is regulated many countries below 10 mg/L as N (As per WHO standards) in drinking water. An attempt was made to get optimal results for the treatment of nitrate nitrogen in groundwater by conducting various experiments by changing the experimental conditions for ZVI bipolar packed bed electrolytic cell. From the experimental results it is evident that the nitrate nitrogen removal is more effective when the reactor conditions are maintained in acidic range but when the acidic environment changes to alkaline due to the hydroxide formed during the process of ammonia nitrogen there by increasing the pH reducing the hydrogen ions required for reduction which leads to low effectiveness of the system. In the ZVI bipolar packed bed electrolytic cell, the packing ratio of 0.5~1:1 was found to be most effective for the treatment of nitrate nitrogen because ZVI particles are isolated and individual particle act like small electrode with low packing ratio. It is seen that formation of precipitate and acceleration of clogging incrementally for packing ratio more than 2:1, decreasing the nitrate nitrogen removal rate. When the voltage is increased it is seen that kinetics and current also increases but at the same time more electric power is consumed. In this experiment, the optimum voltage was determined to be 50V. At that time, nitrate nitrogen was removed by 94.9%.

Background reduction by Cu/Pb shielding and efficiency study of NaI(TI) detector

  • Ramadhan, Revink A.;Abdullah, Khairi MS.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.462-469
    • /
    • 2018
  • The background spectrum of a $3^{{\prime}{\prime}}{\times}3^{{\prime}{\prime}}$ NaI(Tl) well-type scintillation SILENA detector was measured without shielding, in 6 cm thick lead shielding, and with 2 mm thick electrolytic copper covering the detector inside the lead shielding. The relative remaining background of the lead shield lined with copper was found to be ideal for low-level environmental radioactive spectroscopy. The background total count rate in the (20-2160 KeV) was reduced 28.7 times by the lead and 29 times by the Cu + Pb shielding. The effective reduction of background (1.04) by the copper mainly appeared in the energy range from X-ray up to 500 KeV, while for the total energy range the ratio is 1.01 relative to the lead only. In addition, a strong relation between the full-energy peak absolute efficiency and the detector well height was found using gamma-ray isotropic radiation point sources placed inside the detector well. The full-energy peak efficiency at a midpoint of the well (at 2.5 cm) is three times greater than that on the detector surface. The energy calibrations and the resolution of any single energy line are independent of the locations of the gamma source inside or outside of the well.

Characteristic of organic/inorganic composite formed grounding resistance lowering agents (유/무기 복합재료형 접지저감제의 특성)

  • Kim, Jang-Wook;Chung, Chul-Hee;Cho, Dae-Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.74-80
    • /
    • 2004
  • Among inorganic materials, it is grounding resistance lower agent of new form that use being strata style clay and makes using water soluble polymer by main material to organic substance. Water soluble polymer chains are dispertion in water because water soluble polymer reacts with water if is done and these discrete polymer chains are inserted to floor of being strata style clay with water. This material that moisture content is very excellent and rate of expansion, electrical conductivity that measure after supplies water of 300wt % as well as is excellent. Can prevent corrosion or electrolytic corrosion of grounding bar securing very environmentally, chemically and pollution of soil. When applied to general grounding rod worker $7{\sim}8$ times ground resistance reduction effect of not application.

  • PDF

Localization Development of On-Site High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치 국산화 개발)

  • Kim, Jung Sik;Shin, Hyun Su;Lee, Eun Kyoung;Jung, Bong Ik
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • The purpose of this study is to replace existing liquid chlorine with localization of on-site high (12%) sodium hypochlorite generation system. On-site high (12%) sodium hypochlorite generation system is higher the current efficiency of 38.7%, 54.6% reduction of salt consumption, and 97.3% lower rate of chlorate than on-site low (0.8%) sodium hypochlorite generation system.

Crystal Phase Changes of Zeolite in Immobilization of Waste LiCI Salt

  • KIM Jeong-Guk;LEE Jae-Hee;Lee Sung-Ho;KIM In-Tae;KIM Joon-Hyung;KIM Eung-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.176-181
    • /
    • 2005
  • The electrolytic reduction process and the electrorefining process, which are being developed at the Korea Atomic Energy Research Institute (KAERI), are to generate molten waste salts such as LiCI salt and LiCI-KCI eutectic salt, respectively. Our goal in waste salt management is to minimize a total waste generation and fabricate a very low­leaching waste form such as a ceramic waste form. Zeolite has been known to one of the most desirable media to immobilize waste salt, which is water soluble and easily radiolyzed. Zeolite can be also used to the removal of fission products from the spent waste salt. Molten LiCI salt is mixed with zeolite A at $650^{\circ}C$ to form a salt-loaded zeolite, and then thermally treated in above $900^{\circ}C$ to become an immobilized product with crystal phase of $Li_{8}Cl_{2}$-Sodalite. In this work, a crystal phase changes of immobilization medium, zeolite, during immobilization of molten LiCI salt using zeolite A is introduced.

  • PDF

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.