• Title/Summary/Keyword: electrolytic copper powder

Search Result 6, Processing Time 0.019 seconds

The effect of process parameters on copper powder particle size and shape produced by electrolysis method

  • Boz, Mustafa;Hasheminiasari, Masood
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.151-162
    • /
    • 2013
  • In this study, an electrolyzing device for the production of metal powders was designed and fabricated. The production of copper powders was performed using a variety of current densities, anode-cathode distances and power removal times. The effect of these parameters on powder particle size and shape was determined. Particle size was measured using a laser diffraction unit while the powder shape was determined by SEM. Experimental results show that an increase in current density leads to a decrease in powder particle size. In addition particle shape changed from globular dendritic to acicular dendritic with increasing the current density. Distance between the cathode and anode also showed a similar influence on powder particle size and shape. An increase in time of powder removal led to an increase in powder particle size, as the shape changed from acicular dendritic to globular dendritic.

Densification of Copper Powders using High-pressure Torsion Process (고압비틀림 공정을 이용한 구리 분말의 치밀화)

  • Lee, Dong-Jun;Yoon, Eun-Yoo;Kang, Soo-Young;Lee, Jung-Hwan;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.333-337
    • /
    • 2012
  • In this study, electrolytic copper powders were consolidated by high-pressure torsion process (HPT) which is the most effective process to produce bulk ultrafine grained and nanocrystalline metallic materials among various severe plastic deformation processes. The bulk samples were manufactured by the HPT process at 2.5 GPa and 1/2, 1 and 10 turns. After 10 turns, full densification was achieved by high pressure with shear deformation and ultrafine grained structure (average grain size of 677 nm) was observed by electron backscatter diffraction and a scanning transmission electron microscope.

Effects of Gas Injection on the Recovery of Copper Powder from Industrial Waste Water in Fluidized - Bed Electrolytic Reactors (유동층 전극반응기에서 기체의 유입이 산업폐수로부터 동입자의 회수에 미치는 영향)

  • Song, Pyung-Seob;Son, Sung-Mo;Kang, Yong;Kim, Seung-Jai;Kim, Sang Done
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.485-490
    • /
    • 2005
  • Effects of gas injectino on the copper recovery form industrial waste water in a fluidized-bed electrolytic reactor were investigated. Effects of gas injection on the individual phase holdup and efficiency of copper recovery for given operating variables such as liquid and gas velocity (0.1~0.4 cm/s), current density ($2.0{\sim}3.5A/dm^2$) and amount of fluidized solid particles (1.0~4.0 wt%) were examined. The solid particle, whose diameter and swelling density were 0.5 mm and $1100kg/m^3$, respectively, was made of polystylene and divinyl benzene. It was found that the holdup of gas and solid phases increased, but that of the liquid phase decreased with increasing velocity of gas injected into the reactor. With increasing gas and/or liquid velocity and increasing amount of fluidized particles is not needed, the rate of copper recovery increased to a maximum value of and subsequently decreased. The recovery rate of copper increased almost linearly with increasing current density in accordance with Faraday's law.

The Variation of Cu Recovery by Electrowinning Conditions and Their Mineralogical Characteristics from Cathodic Deposition-powdered Copper (전기분해 조건에 따른 구리 회수 변화와 음극회수-구리분말에 대한 광물학적 특성)

  • Cho, Kang-Hee;Kim, Bong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.183-195
    • /
    • 2014
  • In order to study the mineralogical characteristics of a cathodic deposition-metallic powder, electrowinning experiments were carrier out on different electrolytic solutions at varying electric distances and electric currents. Under the same experimental conditions, Cu recovery was obtained much more effectively using a sodium chloride electrolyte than with a sulfuric acid electrolyte. In XRD analysis, copper ($Cu^0$), chalcanthite and cuprite were identified in the sulfuric acid electrolyte, while copper, nantokite and chalcanthite were observed in the sodium chloride electrolyte. In the sodium chloride electrolyte solution, increasing the electric distance and the electric current increased the Cu recovery rate, anode weight and anodic corrosion. The results of XRD analysis with non-pulverized cathodic deposition-metallic powder showed the average copper crystallite size was increased by increasing the electric current and decreasing the electric distance. It is suggested that the mass transfer was controlled with diffusion on the boundary between the electrode and the electrolytic solution due to the formation of dendrite copper.

Electrical Characteristics of Porous Carbon Electrode According to NaCl Electrolyte Concentration (NaCl 전해질 농도 변화에 따른 다공질 탄소전극의 전기적 특성)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.814-819
    • /
    • 2010
  • Porous carbon electrodes with wooden materials are manufactured by molding carbonized wood powder. Electrical properties of the interface for electrolyte and porous carbon electrode are investigated from viewpoint of NaCl electrolyte concentration, capacitance and complex impedance. Density of porous carbon materials is 0.47~0.61 g/$cm^3$. NaCl electrolytic absorptance of the porous carbon materials is 5~30%. As the electrolyte concentration increased, capacitance is increased and electric resistance is decrease with electric double layer effect of the interface. The electric current of the porous carbon electrode compared in the copper and the high density carbon electrode was improved on a large scale, due to a increase in surface area. The circuit current increased as the distance between of the porous carbon electrode and the zinc electrode decreased, due to increase in electric field. Experimental results indicated that the current properties of galvanic cell could be improved by using porous carbon electrode.

The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning (더미 미생물용출에 의한 폐-광석으로부터 유용금속 용해 특성과 Fe 제거와 전기분해를 이용한 금속구리분말 회수)

  • Kim, Bong-JuK;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2014
  • In order to recover the metallic copper powder from the mine-waste rock, heap bioleaching, Fe removal and electrowinning experiments were carried out. The results of heap leaching with the mine-waste rock sample containing 0.034% Cu showed that, the leaching rate of Cu were 61% and 62% in the bacteria leaching and sulfuric acid leaching solution, respectively. Sodium hydroxide (NaOH), hydrogen peroxide ($H_2O_2$) and calcium hydroxide ($Ca(OH)_2$) were applied to effectively remov Fe from the heap leaching solution, and then $H_2O_2$ was selected for the most effective removing Fe agent. In order to prepare the electrolytic solution, $H_2O_2$ were again treated in the heap leaching, and Fe removal rates were 99% and 60%, whereas Cu removal rates were 5% and 7% in the bacteria and sulfuric acid leaching solutions, respectively. After electrowinning was examined in these leaching solution, the recovery rates of Cu were obtained 98% in bacteria and obtained 76% in the sulfuric leaching solution. The dendritic form of metallic copper powder was recovered in both leaching solutions.