• Title/Summary/Keyword: electrolyte solution

Search Result 777, Processing Time 0.036 seconds

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties (전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

Determination of Trace Level Germanium(IV) by Square Wave Anodic Stripping Voltammetry (네모파 산화전극 벗김 전압전류법을 이용한 게르마늄의 미량분석)

  • Il Kwang Kim;Hyun Ja Chun;Seung Il Jeong;Sung Woo Park;Jae Hoon You
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.11
    • /
    • pp.943-950
    • /
    • 1993
  • The determination of trace level germanium in 5.0 ${\times}\;10^{-2}$ M perchloric acid supporting electrolyte solution containing 8.0 ${\times}\;10^{-2}$ M catechol has been investigated by the square wave anodic stripping voltammetry. The optimum conditions in determination of germanium were as follows: deposition time; 120 sec, deposition potential; -0.9 volts vs. Ag/AgCl and frequency; 100 Hz. The determination of germanium was possible regardless of coexistent ion such as copper, lead and silicon. Calibration curve was shown a good linearlity in the range of 0.40 ppb to 2.0 ppm and the detection limit was 0.080 ppb. This method was useful for trace level germanium due to the short analysis time and higher sensitivity.

  • PDF

Plasma Electrolytic Oxidation in Surface Modification of Metals for Electronics

  • Sharma, Mukesh Kumar;Jang, Youngjoo;Kim, Jongmin;Kim, Hyungtae;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • This paper presents a brief summary on a relatively new plasma aided electrolytic surface treatment process for light metals. A brief discussion regarding the advantages, principle, process parameters and applications of this process is discussed. The process owes its origin to Sluginov who discovered an arc discharge phenomenon in electrolysis in 1880. A similar process was studied and developed by Markov and coworkers in 1970s who successfully deposited an oxide film on aluminium. Several investigation thereafter lead to the establishment of suitable process parameters for deposition of a crystalline oxide film of more than $100{\mu}m$ thickness on the surface of light metals such as aluminium, titanium and magnesium. This process nowadays goes by several names such as plasma electrolytic oxidation (PEO), micro-arc oxidation (MOA), anodic spark deposition (ASD) etc. Several startups and surface treatment companies have taken up the process and deployed it successfully in a range of products, from military grade rifles to common off road sprockets. However, there are certain limitations to this technology such as the formation of an outer porous oxide layer, especially in case of magnesium which displays a Piling Bedworth ratio of less than one and thus an inherent non protective oxide. This can be treated further but adds to the cost of the process. Overall, it can be said the PEO process offers a better solution than the conventional coating processes. It offers advantages considering the fact that he electrolyte used in PEO process is environmental friendly and the temperature control is not as strict as in case of other surface treatment processes.

Effects of pH, Electrolyte Concentrations, and Alginate Molecular Weights on Surface Hydrophobicity of Soy Protein Isolates (pH, 전해질의 농도 및 알긴산 분자량이 분리콩단백질의 표면소수성에 미치는 영향)

  • Lim, Yeong-Seon;Yoo, Byung-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1285-1292
    • /
    • 2016
  • Changes in surface hydrophobicity of soy protein isolate (SPI), which plays an important role in the functional characteristics of protein, were measured according to various SPI concentrations, pH levels, electrolytes concentrations, and alginate molecular weights by using 1-anilino-8-naphthalene sulfonic acid as a fluorescent probe. SPI surface hydrophobicity decreased as SPI concentrations increased. SPI surface hydrophobicity reached a maximum at pH 7.0. SPI surface hydrophobicity rapidly increased as the NaCl concentration of SPI solution increased up to 100 mM, and showed no large increases above 100 mM. However, SPI surface hydrophobicity radically decreased until the $CaCl_2$ concentration reached 50 mM and revealed no large variations above 50 mM. A similar trend was exhibited in the case of $MgCl_2$. As both the concentration and molecular weight of sodium alginate increased, SPI surface hydrophobicity decreased. The increasing rate of SPI surface hydrophobicity decreased as the molecular weight of sodium alginate increased.

Bone-like Apatite Morphology on Si-Zn-Mn-hydroxyapatite Coating on Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.158-158
    • /
    • 2017
  • Titanium and its alloys have been used in the field dental and orthopedic implants because of their excellent mechanical properties and biocompatibility. Despite these attractive properties, their passive films were somewhat bioinert in nature so that sufficient adhesion of bone cells to implant surface was delayed after surgical treatment. Recently, plasma electrolyte oxidation (PEO) of titanium metal has attracted a great deal of attention is a comparatively convenient and effective technique and good adhesion to substrates and it enhances wear and corrosion resistances and produces thick, hard, and strong oxide coatings. Silicon(Si), Zinc(Zn), and Manganese(Mn) have a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. And, Zn has been shown to be responsible for variations in body weight, bone length and bone biomechanical properties. Also, Mn influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. The objective of this work was research on bone-like apatite morphology on Si-Zn-Mn-hydroxyapatite coating on Ti-6Al-4V alloy by plasma electrolytic oxidation. Anodized alloys were prepared at 280V voltage in the solution containing Si, Zn, and Mn ions. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, and EDS.

  • PDF

Effect of Zn Content on the Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.159-159
    • /
    • 2017
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements are known to play an important role in the bone formation and also affect bone mineral characteristics. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing TiO2(Zn-TiO2)coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, effect of Zn content on the corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation were studied by SEM, EDS, XRD, AC impedance, and potentiodynamic polarization test. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67 mV/s and potential range from -1500 mV to +2000 mV. Also, AC impedance was performed at frequencies ranging from 10 MHz to 100 kHz for corrosion resistance.

  • PDF

Effects of Additive Binder Contents on Electrode Properties of Carbon Anode for Fluorine Electrolysis (불소전해용 양극탄소전극의 전극특성에 미치는 첨가 결합제의 영향)

  • Ahn, Hong Joo;Oh, Han Jun;Chi, Choong Soo;Kim, Young Cheul;Ko, Young Shin
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.413-421
    • /
    • 2001
  • The carbon electrodes for fluorine electrolysis were prepared from petroleum cokes containing coal tar pitch as binder and the effects of binder contents on electrode properties were investigated. The evaluations were performed by cyclic voltammogram in the 0.5 M $K_2SO_4$ solution with 1 mM $[Fe$(CN)_6$]^{3-}$/$[Fe$(CN)_6$]^{4-}$redox couple, mechanical strength, and electrochemical behaviour in molten $KF{\cdot}2HF$ electrolyte. It was revealed that the carbon anode formed with 40wt% of coal tar pitch as binder has a better electrode properties compared to those of the other carbon anode, which led to the increase in the effective internal surface area due to proper size and distribution of pores on carbon anode.

  • PDF

Reduction of Methanol Crossover in a Direct Methanol Fuel Cell by Using the Pt-Coated Electrolyte Membrane

  • Jung, Eun-Mi;Rhee, Young-Woo;Peck, Dong-Hyun;Lee, Byoung-Rok;Kim, Sang-Kyung;Jung, Doo-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • A Pt-layer was deposited on the anode side of a Nafion membrane via a sputtering method in order to reduce methanol crossover in a direct methanol fuel cell (DMFC). The methanol permeation and the proton conductivity through the modified membranes were investigated. The performances of the direct methanol fuel cell were also tested using single cells with a Nafion membrane and the modified membranes. The Pt-layers on the membrane blocked both methanol crossover and proton transport through the membranes. Methanol permeability and proton conductivity decreased with an increase of the platinum layer thickness. At methanol concentration of 2 M, the DMFC employing the modified membrane with a platinum layer of 66 nm-thickness showed similar performance to that of a DMFC with a bare Nafion membrane in spite of the lower proton conductivity of the former. The maximum power density of the cell using the modified membrane with a platinum layer of 66 nm-thickness increased slightly while that of the cell with the bare membrane decreased abruptly when a methanol solution of 6M was supplied.

Thermal Stability of Surface Film Formed on a Graphite Negative Electrode in Lithium Secondary Batteries (리튬 이차전지의 흑연 음극에 형성된 표면피막의 열적 안정성)

  • Jeong, Soon-Ki;Lee, Ha-Na;Kim, Yang-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • The stability at elevated temperatures of a surface film formed on a graphite electrode in lithium secondary batteries was investigated by transmission electron microscopy (TEM) and electrochemical AC impedance spectroscopy (EIS). TEM analysis revealed that the surface film partly dissolved in the electrolyte solution during storage at $60^{\circ}C$, resulting in a decrease in the thickness of the surface film and a change in its morphology to a porous structure. On the other hand, an increase in the impedance of the surface film which is attributable to a change in composition of the surface film was confirmed by EIS analysis during the storage at $60^{\circ}C$. It was also shown that the addition of vinylene carbonate or 1,3-propane sultone or etylene sulfite, even if limited, improves the stability of the surface film at elevated temperatures.

The Adsorption and Elution Characteristics of Copper Ions in Electrochemical Ion Exchange Electrode Fabricated by the Compressed Diecasting (압착성형법으로 제작된 전기화학적 이온교환 전극에서 구리이온의 흡착과 용출특성)

  • Park, Sei-Yong;Kim, Lae-Hyun;Joe, Young-Il
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.574-578
    • /
    • 1998
  • Electrochemical Ion Exchang(EIX) electrode containing Amberlite IRP-64 as a cation ion exchange resin and Stylene-Buthylene-Rubber(SBR) as a binder was fabricated by the compressed diecasting method. The adsorption and elution characteristics in copper sulfate solution were investigated at the various electrode potentials and electrolyte pHs. In the adsorption process, it was found that the maximum adsorption rate of copper was obtained at -1800 mV and the ratio of adsorption was 92% during 90 min. In the elution process, the elution rate of copper was increased in proportion to anodic potential in the present experimental range and the ratio of elution was 88% during 50 mins at 3600 mV. The adsorption and elution processes were significantly affected by the variation of local pH in the vicinity of electrochemical ion exchange electrode. The higher performances of adsorption and elution were elution were obtained at basic and acidic eletrolytes.

  • PDF