• 제목/요약/키워드: electrolyte membranes

검색결과 266건 처리시간 0.027초

Characterization of DNA/Poly(ethylene imine) Electrolyte Membranes

  • Park, Jin-Kyoung;Won, Jong-Ok;Kim, Chan-Kyung
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.581-586
    • /
    • 2007
  • Cast DNA/polyethyleneimine (PEI) blend membranes containing different amounts of DNA were prepared using acid-base interaction and characterized with the aim of understanding the polymer electrolyte membrane properties. Two different molecular weights of PEI were used to provide the mechanical strength, while DNA, a polyelectrolyte, was used for the proton transport channel. Proton conductivity was observed for the DNA/PEI membrane and reached approximately $3.0{\times}10^{-3}S/cm$ for a DNA loading of 16 wt% at $80^{\circ}C$. The proton transport phenomena of the DNA/PEI complexes were investigated in terms of the complexation energy using the density functional theory method. In the case of DNA/PEI, a cisoid-type complex was more favorable for both the formation of the complex and the dissociation of hydrogen from the phosphate. Since the main requirement for proton transport in the polymer matrix is to dissociate the hydrogen from its ionic sites, this suggests the significant role played by the basicity of the matrix.

Al장극산화법에 의한 반휴분이용 다공성 격영의 제조에 관한 연구 (A Study on the Manufacturing of Porous Membrane for Separation of Gas Mixture by Al Anodizing Method)

  • 윤은열;라경용
    • 한국표면공학회지
    • /
    • 제15권2호
    • /
    • pp.69-76
    • /
    • 1982
  • With a view to manufacturing membranes for separation of gas mixtures, Al foils were anodized in a 2% oxalic-acid electrolyte at 40V and 80V. When anodizing was completed and Barrier layer existed at the extreme back site of the foil, the anodized foil was made to react with only electrolyte, with switching off the electric power. When the size and density of pores were changed through voltage change, the membr-anes did not show large difference in the permeability. Reacting with electrolyte, the existing Barrier layer turns into porous layer. During this process, several small pores grow from one relatively large pore, getting to the back site. The number and size of the small pores getting to the back surface increase as time passing. This change of Barrier layer into porous layer is thought to be directly related to the permeability change of the membranes. The selectivity of an anodized Al membrane was not related to the voltage change, and was high, being similar to the theoretical selctivity of metallic membranes, according to my observation.

  • PDF

랜덤 및 블록 공중합에 따른 고분자 전해질막의 이온전도특성 (Son transport characteristics through random or block polymer electrolyte membranes)

  • Park, Chi-Hoon;Lee, Chang-Hyun;Nam, Sang-Yong;Park, Ho-Bum;Lee, Young-Moo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 춘계 총회 및 학술발표회
    • /
    • pp.57-60
    • /
    • 2004
  • Polymer electrolyte membranes have been studied widely in chloro-alkali electrolysis, cationic exchange resins, and fuel cell applications. Especially, sulfonated polyimide membranes have been suggested as a potential polymer electrolyte in PEMFC due to their excellent thermal stability and high proton conductivity.(omitted)

  • PDF

고분자 연료전지용 세공충진막의 제조 및 연료전지 특성 (Preparation of pore-filling membranes for polymer electrolyte fuel cells and their cell performances)

  • 최영우;박진수;이미순;박석희;양태현;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2009
  • Proton exchange membrane is the key material for proton exchange membrane fuel cells (PEMFC). Currently widely-used perfluorosulfonic acid membranes have some disadvantages, such as low thermal stability, easy swelling, excessive crossover of methanol and high price etc. Other membranes, including sulfonated polymer, radiation grafted membranes, organic-inorganic hybrids and acid-base blends, do not satisfy the criteria for PEMFC, which set a barrier to the development and commercialization of PEMFC. Pore-filling type proton exchange membrane is a new proton exchange membrane, which is formed by filling porous substrate with electrolytes. Compared with traditional perfluorosulfonic acid membranes, pore-filling type proton exchange membranes have many advantages, such as non- swelling, low methanol permeation, high proton conductivity, low cost and a wide range of materials to choose. In this research, preparation methodology of pore-filling membranes by particularly using all hydrocarbon polymers and fuel cell performances with the membranes are evaluated.

  • PDF

염료감응 태양전지용 고분자 전해질막의 총설 (Review on Polymer Electrolyte Membranes for Dye-sensitized Solar Cells)

  • 이재훈;박철훈;이창수;김종학
    • 멤브레인
    • /
    • 제29권2호
    • /
    • pp.80-87
    • /
    • 2019
  • 염료감응형 태양전지는 지속 가능한 에너지원으로서 많은 관심을 받고 있다. 염료감응형 태양전지의 효율과 장기 안정성은 전극 물질과 전해질에 의해 크게 영향을 받는데 본 총설에서는 전해질에 초점을 두어 서술하고자 한다. 고분자 전해질막은 염료감응형 태양전지에서 기존의 액체 전해질을 대체하기 위한 대안으로 제시되어 왔다. 기존의 액체 전해질은 높은 효율을 나타낼 수 있지만 장기적인 안정성 문제와 누액 문제로 인해 고분자 전해질막에 관한 관심은 지속적으로 증가하고 있으며 매년 이와 관련된 논문들이 활발히 보고되고 있다. 본 총설은 염료감응형 태양전지를 위한 고분자 전해질막의 개념과 개발에 대한 간단한 설명을 다루고 있으며 고분자 매트릭스의 개질, 유-무기 가소제 및 이온성 액체와 같은 첨가제의 도입에 따른 염료감응형 태양전지의 효율과 전기화학적 특성에 대해서도 최근의 연구들이 정리되어 있다.

Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin

  • Won Jong-Ok;Yoo Ji-Young;Kang Moon-Sung;Kang Yong-Soo
    • Macromolecular Research
    • /
    • 제14권4호
    • /
    • pp.449-455
    • /
    • 2006
  • Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated-${\beta}$-cyclodextrins (${\beta}-CDSO_3H$) or phosphated-${\beta}$-cyclodextrins (${\beta}-CDPO(OH)_2$). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either ${\beta}-CDSO_3H$ or ${\beta}-CDPO(OH)_2$ in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.

Semi-interpenetrated Polymer Network of Sulfonated Poly(Styrene-Divinylbenzene-Acrylonitrile) based on PVC Film for Polymer Electrolyte Membranes

  • Yun, Sung-Hyun;Woo, Jung-Je;Seo, Seok-Jun;Park, Jung-Woo;Oh, Se-Hun;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • 제11권1호
    • /
    • pp.8-14
    • /
    • 2009
  • The sulfonated poly(styrene-divinylbenzene-acrylonitrile) (ST-DVB-AN) composite polymer electrolyte membrane based on the original PVC film was successfully synthesized to improve oxidative stability using semi-interpenetrated polymer network (semi-IPN). Weight gain ratio after copolymerization was enhanced by the DVB and AN contents, and the sulfonated membranes were characterized in terms of proton conductivity (k), ion exchange capacity (IEC), and water uptake ($W_U$). The effect of DVB content and AN addition were thoroughly investigated by comparing the resulted properties including oxidative stability. The obtained ST-DVB-AN composited semi-IPN membranes showed relatively high proton conductivity and IEC compared with Nafion117, and greatly improved oxidative stability of the synthesized membrane was obtained. This study demonstrated that a semi-interpenetrated sulfonated ST-DVB-AN composited membrane reinforced by PVC polymer network is a promising candidate as an inexpensive polymer electrolyte membrane for fuel cell applications.

고온/저가습 고분자전해질 연료전지를 위한 이온성 액체 기반 고분자 전해질막 개발 (Development of PolymerElectrolytes Based on Ionic Liquids forHigh Temperature/Low Humidity PEFC Applications)

  • 새트팔 싱 세콘;박진수;조은경;박구곤;김창수;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.40-43
    • /
    • 2008
  • High temperature polymer electrolyte membranes incorporating ionic liquids (ILs) in different polymers such as commercial fluorinated polymers, sulfonated polymers and recasted nafion have been developed. ILs based on imidazolium cation and different anions possess high ionic conductivity and good thermal stability and have been used in the present study. The membranes containing IL show conductivity ${\sim}10^{-2}S\;cm^{-1}$ above $100^{\circ}C$ under anhydrous conditions and are thermally stable up to $250-300^{\circ}C$. IL acts as a conducting medium in these electrolytes and plays the same role as played by water in fully hydrated nafion membranes. Due to high conductivity and good thermal stability, these membranes are promising materials for PEFCs at higher temperatures under anhydrous conditions.

  • PDF

전자 및 이온 전도성 $CeO_2-Sm_2O_3$ 고체 전해질 막의 합성 및 응용 (Synthesis and Application of $CeO_2-Sm_2O_3$ Solid Electrolyte Membranes with Electronic and Ionic Conductivities)

  • 현상훈;권재환;김승구;김계태
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.355-363
    • /
    • 1998
  • The oxygen flux of SDC ($Sm_2O_3\;doped\;CeO_2$) solid electrolyte membranes with electronic and oxygen ion-ic conductivities has been investigated as a basic research in order to develop the conversion process of na-tural gas to syngas using the ceramic membrane reactor. Tube type membranes(1 mm thickness) were fa-bricated by slip casting of SDC powders prepared by the oxalate coprecipitaion method. Dense oxygen per-meation membranes(0.1 mm thickness) could be synthesized via sintering at $1450^{\circ}C$ for 2h and their re-lative density was over 95% The oxygen flux through SDC membranes doped 20mol% $Sm_15$ was about $1.13{\times}10^{-5}\;mol/m_2{\cdot}sec$ at low temperature around $800^{\circ}C$. In addition the SDC membranes showed a good thermaal stability for a long period of service.

  • PDF

SPEEK/PWA/Silica 복합막의 전기화학적 특성에 관한 연구 (A Study on the Electrochemical Properties of SPEEK/PWA/Silica Composite Membranes)

  • 오세중
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2529-2535
    • /
    • 2013
  • SPEEK/PWA/silica 전해질 복합막을 제조하기 위하여 졸-겔 방법을 이용하였다. 졸-겔반응의 전구체로는 TEOS를 사용하였으며 첨가제 겸 촉매로는 phosphotungstic acid(PWA)를 사용하였다. FE-SEM 분석을 통하여 PWA 및 silica 나노입자들은 고분자속으로 균일하게 분산되는 것을 확인할 수 있었다. SPEEK/PWA/silica 복합막의 함수율은 TEOS의 비율이 낮은 경우에는 TEOS의 증가에 따라 함수율이 감소하였지만 TEOS의 비율이 높은 경우에는 TEOS의 영향을 적게 받았다. SPEEK/PWA/silica 복합막의 이온전도도는 함수율의 변화와 유사한 경향을 나타내었으며 TEOS의 비율이 증가함에 따라 처음에는 이온전도도가 감소하다가 다시 증가하는 경향을 나타내었다. SPEEK/PWA/silica 복합막의 메탄올 투과도는 TEOS의 농도가 증가함에 따라 투과도가 감소하는 경향을 나타내었다.