• 제목/요약/키워드: electrolysis system

검색결과 211건 처리시간 0.042초

음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화 (Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis)

  • 이호석;명신우;박준영;박언주;허성준;김남인;이재훈;이재훈;정재엽;진송;이주영;이상호;김치호;최승목
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

수전해용 MoPA 결합된 폴리에테르 에테르 케톤 고분자 복합막의 개발 및 특성 (Development and Charateriztion of Molybdophosphoric Acid Bonded Polyether Ether Ketone Polymer Composite Membrane for Water Electrolysis)

  • 김민진;김보영;문상봉;정장훈
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.338-344
    • /
    • 2017
  • Polyoxometal molybdophosphoric acid (MoPA) bonded polyether ether ketone (PEEK) composite membrane for water electrolysis has been investigated. The composited membrane, covalently cross linked (CL) sulfonated polyether ether ketone (SPEEK) with a bonded MoPA, was prepared in sulfonation of PEEK, cross linkage reaction with 1,4-diiodobutane, and addition with MoPA. PEEK was covalently cross-linked with 1,4-diiodobutane to improve mechanical strength and was added with MoPA to increase proton conductivity. MoPA should be fixed to back bone of SPEEK to prevent bleeding out. Therefore, the carbonyl group of SPEEK was reduced with NaBH4 and 3-isocyanatepropyltriethoxysilane (ICPTES) was added. The MoPA bonded composite was produced in the reaction of MoPA with 3-mercaptopropyltrimethoxvsilane (MPTMS). In conclusion, MoPA bonded CL-SPEEK composite membrane featured 0.129 S/cm of proton conductivity at $80^{\circ}C$, and 2,156 hours of chemical stability in Fenton test. These properties are better than those of membranes of other SPEEK system.

Electro-Fenton 반응을 이용한 유독성 유기화합물 처리 (Removal of Toxic Organic Compound using Electro-Fenton Reaction)

  • 박상원
    • 한국환경과학회지
    • /
    • 제13권6호
    • /
    • pp.551-560
    • /
    • 2004
  • The feasibility and efficiency of the hydrogen peroxide produced by an electrolysis cell reactor was investigated, From regulating voltages for the given reaction time, the concentration of the hydrogen peroxide was gradually increased with increasing voltages. Optimal voltage range was found to be 10~15 V. The concentration of hydrogen peroxide was much higher with oxygen gas than without oxygen gas in the cathodic chamber. But there was a little difference in the generating rate of hydrogen peroxide regardless of the presence of nitrogen gas. Under given conditions, the maximum value of ICE(Instantaneous Current Efficiency) was about 38%, and then current density was 74 $mA/\textrm{cm}^2.$ The specific energy consumption was $0.694[kWh/kg-H_2O_2].$ Since Esp (Specific Energy Consumption)was very little value, It did not demand high energy in this system. Using the hydrogen peroxide gained in the experiment, Fenton's reaction was conducted and the removal of nitrobenzene, 3-chlorophenol and dye wastewater was studied. This results were very similar to the Fenton's reaction by using commercial hydrogen peroxide.

수소 연료 생산의 효율향상을 위한 초음파 응용에 관한 연구 - 압력센서 계기에 의한 - (A Study on the Utrasonic Application for the Efficiency Elevation of the Hydrogen Fuel Production - By the Pressure Sensor Gage -)

  • 송민근;손승우;주은선
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1229-1237
    • /
    • 2003
  • The production of hydrogen fuel depends basically on the water electrolysis. The ultrasonic effects the decrease of the overpotential in a water electrolysis. A study on the overpotential which activates the hydrogen production is the core to elevate the hydrogen production efficiency on the principle. A pressure sensor system by a new idea is developed and applied. Solutions are 4 kinds of KOH concentration such as 0%, 10%, 20%, and 30%. Two frequency bands of the ultrasonic transducer are 28kHz and 2MHz. The directions of ultrasonic forcing are the vertical direction and the horizontal direction. The temperatures are two states, i.e., no constant and constant. Experiments are carried out sequentially in order in three cases of no ultrasonic forcing, ultrasonic forcing, and ultrasonic discontinution. In results, it is clarified that the ultrasonic effects the decrease of overpotential to elevate the efficiency of hydrogen production.

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

Development of Water Treatment Device By Fluidization Electrolysis Using Granular Ceramics

  • Ishikawa, Katsumi;Tamura, Rokurou;Shuto, Rika;Miyawaki, Jinuchi;Tanabe, Kimiko
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.737-745
    • /
    • 1996
  • In recent years, with the increase in the consumption of natural resources and energy, global environmental problems have appeared. This is a very serious environmental load on worldwide food production. For this reason, innovative techniques for production of low entropy by using effectively the energy for the ecosystemic agriculture have been expected. In this study, granular ceramics of 2 to 3mm in diameter having electrical charges at the surface were produced, using the natural raw materials of silicate minerals haing excellent moldabilities and sintering properties . Production of water having functions was attempted by effective use of the electrochemical energy of the ceramics with an efficient water treatment apparatus in which the ceramics were fluidized in water, differently from conventional systems. In the experimental results, the EC of water treated with the ceramics was not changed, but the ORP and also the pH and the DO were changed. The speed of oxidation -re uction reaction was high, and the ceramics -treated water enhanced the vigor of seeds. It can be expected that this treatment system, by which the ORP of water can be moderately controlled, is advantageous in controlling the growth of plants.

  • PDF

AHP 기법을 이용한 10,000 TEU 이상 컨테이너선에 적용되는 선박평형수 처리장치 최적제품 선정에 관한 연구 (An Application of AHP for the Selection of Optimum Product of BWTS for over 10,000 TEU Container Ship)

  • 이상원;김동준;서원철
    • 대한조선학회논문집
    • /
    • 제52권5호
    • /
    • pp.395-406
    • /
    • 2015
  • The Ballast Water Treatment System was developed to prevent the unintended transport of unwanted organisms from one region to another as demanded by the IMO (International Maritime Organization). Although various types of BWTS in the world have been developed until now and applied to various ships, there has been no systematic basis for its selection and installation. Currently, the system selection and installation are as per ship owner’s suggestion or by easy installation point of view by the shipyard. In order to organize, systemize and solve problems related to the selection and installation of BWTS, a definitive study has been performed to come up with the best alternative to derive value and criteria which were to be met for vessels which are to be equipped with BWTS. Multiple criteria were compared alongside each other during the course of this study. Accordingly an AHP (Analytic Hierarchy Process) analysis method for A, B and C companies were done for container ships with size 10,000 TEU and above. Equipment type for “A” company is “Filter, UV & TiO2” combined type. For “B” company it is “Filter & UV” combined type. Finally for “C” company it is “Electrolysis” type. Henceforth, the results of this study aims to come up with the optimum way to select the best and the most suitable BWTS for a certain vessel.

상온(常溫) 전해법(電解法)에 의한 리튬 금속(金屬)의 회수(回收): I. 전극물질(電極物質)의 영향(影響) (Recovery of Metallic Lithium by Room-Temperature Electrolysis: I. Effect of Electrode Materials)

  • 이재오;박제식;이철경
    • 자원리싸이클링
    • /
    • 제21권6호
    • /
    • pp.45-50
    • /
    • 2012
  • 리튬 리싸이클링의 일환으로 상온 전해법으로 금속형태의 리튬을 회수하는 연구를 수행하였다. 리튬 전해액으로 이온성액체인 PP13TFSI에 리튬염으로 LiTFSI를 용해시켜 사용하였으며, 작동전극으로 금, 백금 및 구리를 각각 적용하였다. 작동전극 상에서 조사한 순환전위주사 실험 결과로부터 리튬의 상온 전해환원에 대한 가능성을 확인하였으며, 백금이나 구리의 경우 보다 금 전극에서 리튬 환원전류가 더 크게 나타났다. 정전위법(-2.4 V vs. Pt-QRE)으로 1시간동안 금 전극 상에 전착한 다음, 전극표면을 SEM-EDS 및 XRD 분석을 하였다. 전착된 리튬은 금속 리튬 혹은 금과의 합금 형태이었으며, 침상형으로 균일하게 전착되었음을 확인하였다. 또한 전착물에 미량의 산소가 검출되는 것은 분석과정에서 시편이 공기 중에 노출되었기 때문으로 판단된다.

세척방법에 따른 인삼의 저장 중 품질특성 (Quality Characteristics during Storage of Ginseng Washed by Different Methods)

  • 이현석;차환수;김병삼;권기현
    • 한국식품저장유통학회지
    • /
    • 제16권3호
    • /
    • pp.342-347
    • /
    • 2009
  • 인삼의 저장 유통시키는 기존 방식을 개선키 위한 기초 연구로 표면 세척을 한 인삼의 저장 중에 품질변화를 세척 살균수로 저온 냉각수($2^{\circ}C$), 전해수(pH 8.0-8.5, HClO 80 ppm), 이산화 염소수(5 ppm)를 사용하여 품질특성을 비교 하였다. 경도 분석결과, 모든 처리구에서 연화현상이 발생되는 것으로 분석되었다. 무처리 후 저장 조건의 CT-10 처리구의 경우 15일 경과 후에 급격히 표면의 경도 저하 현상이 나타났으며, $20^{\circ}C$ 저장온도에서는 모든 처리구에서 $10^{\circ}C$에 비교하여 연화에 의한 경도의 변화가 급격히 진행되어 측정이 불가능하였다. 색도의 변화는 저장온도 10, $20^{\circ}C$에서 모든 처리구가 갈변반응이 진행되었다. 상대적으로 저온 냉각수의 세척이 오히려 무처리구 보다 갈변반응이 높게 나타났으며, 전해수와 이산화염소수 처리가 갈변억제 또는 지연을 하는 것으로 나타났다. 중량 감소율은 처리구의 50일까지 중량 감소폭이 유사한 경향을 나타내었다. 저장 15일후 $10^{\circ}C$에서는 무처리구와 비교하여 전해수처리가 가장 효과적인 것으로 나타났으며 이산화 염소수, 무처리구 저온 냉각수 순으로 감소폭이 증가하는 것으로 분석되었다. 저장 30일후에는 저장 15일후와 유사한 경향을 보이고 있으며 전해수 처리구의 경우 중량 감소율이 빠르게 진행되는 것을 알 수 있었다. 저장 50일후는 모든 처리구에서 유의적인 차이를 볼 수가 없었다. 저장 10일후 $20^{\circ}C$에서는 $10^{\circ}C$에서와 같이 처리구별 뚜렷한 경향을 보이지 않았으나 이산화염소수 처리가 가장 감소폭이 높게 나타났다. 살균조건별 미생물의 변화는 10, $20^{\circ}C$에서 전해수 80 ppm이 효과적인 것으로 분석되었다. 또한 세척방법에서 이산화 염소수의 경우 전해수 처리구와 비슷한 경향으로 분석되었다. 세척 인삼의 저장 중 수분 변화(%)는 모든 처리구에서 인삼은 수분의 변화가 나타나지 않는 것으로 분석되었다.