• 제목/요약/키워드: electrolysis system

검색결과 211건 처리시간 0.021초

무격막식 해수 전기분해 방식을 통한 배연 탈질에 관한 연구 (A Study on the NOx Reduction of Flue Gas Using Un-divided Electrolysis of Seawater)

  • 김태우;최수진;김종화;송주영
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.825-829
    • /
    • 2012
  • 본 연구에서는 전기분해 처리된 해수의 유효염소농도와 온도에 의한 배가스 중 NO의 산화 특성을 실험적으로 살펴보았다. 실험은 무격막식 전해수가 채워진 버블링 반응기에 반응가스를 공급하여 NO 농도의 변화를 분석하였다. 폐순환 전기분해 시스템의 경우 정전류 조건에서 전해 시간이 길어질수록 전해수 내에 유효염소농도가 상승하였고, 전해수의 유효염소농도가 높을수록 NO가 $NO_2$로 산화되는 반응이 촉진됨을 확인하였다. 또한 동일한 유효염소농도를 가지는 전해수의 경우에도 온도가 높을수록 NO 산화율이 증가하였다.

국내 재생에너지 연계 수전해 청정수소 생산 발전 전략: 국내외 관련 연구의 비교, 분석을 중심으로 (Development Strategy of Clean Hydrogen Production by Renewable Energy-based Water Electrolysis in Korea)

  • 최영열;정인성;김태진
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.389-397
    • /
    • 2023
  • This study compares domestic and foreign research on renewable energy-based water electrolysis clean hydrogen. Domestic studies from 2010 to 2023 focused on technological efficiency, energy efficiency, and system efficiency, with few analyzing infrastructure and technology trends. Overseas research initially focused on technological efficiency and stability, but has since shifted to economic and environmental impact, policy effectiveness, industry-university-research cooperation, and sustainability. To improve water electrolysis technology production, this study suggests prioritizing technology stability over efficiency, resolving government regulations and resident acceptance issues, promoting industry-university-institute cooperation for rapid commercialization of research results, and developing a strategy for sustainable development of renewable energy-based water electrolysis technology.

전기 펜톤-유사 반응을 이용한 Rhodamine B의 색 제거 (Decolorization of Rhodamine B by Electro Fenton-like Reaction)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제17권1호
    • /
    • pp.37-44
    • /
    • 2008
  • The electro-chemical decolorization of Rhodamine B (RhB) in water has been carried out by electro Fenton-like process. The effect of distance, material and shape of electrode, NaCl concentration, current, electric power, $H_2O_2$ and pH have been studied. The results obtained that decrease of RhB concentration of Fe(+)-Fe(-) electrode system was higher than that of other electrode system. The decrease of RhB concentration was not affected electrode distance and shape. Decolorization of electro Fenton-like reaction, which was added $H_2O_2$ onto the electrolysis using electrode was higher than electrolysis. Addition of NaCl decreased the electric consumption. The lower pH is, the faster initial reaction rate and reaction termination time observed.

BDD전극을 이용한 해수에서의 NaOCl 생성 (NaOCl produced by electrolysis of seawater using BDD electrode)

  • 홍경미;박수길;타케요시 오카지마;타케오 오사카;아키라 후지시마
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.373-374
    • /
    • 2005
  • NaOCl (Sodium hydrochlorite) have similar smell of chloride and solution of straw color. And boiling point is $110^{\circ}C$, specific gravity is 1.0(50g/l)/1.1(100g/l), Value of pH is 12. NaOCl playa role as bleach, a oxidizer, a germicide, a decolorant, a deodorant, treatment of water supply and drainage, food addition agent because strong oxidation, bleaching, sterilization effect is had. When NaOCl is produced in electrolysis of seawater, this system is composed of injection system by directly electrolysis of salt water on the spot and sodium hydrochlorite generate a safe low concentration(0.4~0.8 %).

  • PDF

태양광 발전 연계 수전해 시스템의 경제성 분석 (Techno-Economic Analysis of Water Electrolysis System Connected with Photovoltaic Power Generation)

  • 황순철;박진남
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.477-482
    • /
    • 2021
  • Hydrogen production, hydrogen production cost, and utilization rate were calculated assuming four cases of hydrogen production system in combination of photovoltaic power generation (PV), water electrolysis system (WE), battery energy storage system (BESS), and power grid. In the case of using the PV and WE in direct connection, the smaller the capacity of the WE, the higher the capacity factor rate and the lower the hydrogen production cost. When PV and WE are directly connected, hydrogen production occurs intermittently according to time zones and seasons. In addition to the connection of PV and WE, if BESS and power grid connection are added, the capacity factor of WE can be 100%, and stable hydrogen production is possible. If BESS is additionally installed, hydrogen production cost increases due to increase in Capital Expenditures, and Operating Expenditure also increases slightly due to charging and discharging loss. Even in a hydrogen production system that connects PV and WE, linking with power grid is advantageous in terms of stable hydrogen production and improvement of capacity factor.

선박 평형수 처리장치 선정을 위한 경제성 분석 (Economy Analysis to Retrofit Ballast Water Treatment System for an Existing Vessel)

  • 지재훈;박상균;오철
    • 수산해양교육연구
    • /
    • 제28권5호
    • /
    • pp.1319-1328
    • /
    • 2016
  • Since Ballast Water Management Convention has been effected, BWTS, applied to new-building vessels and existing vessels, have been developed from many countries with various treatment methods. However, BWTS is mainly typed Electrolysis, Ozone and UV type. Approximately 70 products have been type approved by the Flag Administrations. For the new-building vessels, the vessels' design and construction have been considered for arrangements and installations for BWTS. However, existing vessels which already construction had finished have problem with selection of BWTS type for installation and arrangement. The selection of the most economized BWTS system is important though, CAPEX has not been made any significant differences. However, OPEX is more important factor. Consequently, detail analysis of OPEX is the key to the selection of the most economized BWTS system and also it can be the purpose of this study. The feasibility study on the main three type of BWTS (Electrolysis, Ozone and UV type) for 175K Bulk Carrier and 57K Cargo ship has been conducted for this study. Because, these three type of BWTS have been the most frequently installed and used and the two type of object vessels are consist of the 40% of the world merchant ship market. For this study, interest rate, project duration (operation time after installation), maintenance cost and fuel oil price are considered as major factor of feasibility study. In addition, expecting Interest rates to sensitivity analysis conducted for more accurate feasibility study. For 175K Bulk carrier, ozone treatment system is more economical than other types. For 57K cargo ship, UV type is considered more economical than other types. However, it is concluded that electrolysis type is more suitable compare to installation space, total weight and electrical power consumption.

Effects of a Pre-Filter and Electrolysis Systems on the Reuse of Brine in the Chinese Cabbage Salting Process

  • Kim, Dong-Ho;Yoo, Jae Yeol;Jang, Keum-Il
    • Preventive Nutrition and Food Science
    • /
    • 제21권2호
    • /
    • pp.147-154
    • /
    • 2016
  • In this study, the effects of a pre-filter system and electrolysis system on the safe and efficient reuse of brine in the cabbage salting process were investigated. First, sediment filter-electrolyzed brine (SF-EB) was selected as brine for reuse. Then, we evaluated the quality and microbiological properties of SF-EB and Chinese cabbage salted with SF-EB. The salinity (9.4%) and pH (4.63) of SF-EB were similar to those of control brine (CB). SF-EB turbidity was decreased (from 0.112 to 0.062) and SF-EB residual chlorine (15.86 ppm) was higher than CB residual chlorine (0.31 ppm), and bacteria were not detected. Salinity (2.0%), pH (6.21), residual chlorine (0.39 ppm), chromaticity, hardness, and chewiness of cabbage salted with SF-EB were similar to those of cabbage salted with CB. The total bacterial count in cabbage salted with CB was increased as the number of reuses increased (from 6.55 to 8.30 log CFU/g), whereas bacteria in cabbage salted with SF-EB was decreased (from 6.55 to 5.21 log CFU/g). These results show that SF-EB improved the reusability of brine by removing contaminated materials and by sterilization.

음이온교환막 수전해 촉매기술 동향 (Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis)

  • 김지영;이기영
    • 전기화학회지
    • /
    • 제25권2호
    • /
    • pp.69-80
    • /
    • 2022
  • 고순도 수소생산을 위한 음이온 교환막 수전해는 양성자 교환막 수전해 시스템에서 사용되는 기존 귀금속 촉매 대신 저렴한 비귀금속 기반 촉매를 사용하여 차세대 녹색 수소 생산 기술로 많은 관심을 받고 있다. 하지만 음이온 교환막 수전해 기술은 개발 초기 단계이기 때문에 음이온 교환막 수전해의 핵심 요소인 음이온 교환막, 이오노머, 전극지지체 및 촉매에 관한 연구 수행이 필요하다. 그 중, 현재 촉매 분야에서 진행되고 있는 연구들은 기개발된 알칼리용 반쪽전지 촉매를 음이온 교환막 시스템에 적용하는 방향의 연구가 진행되고 있으며 적용된 촉매는 낮은 활성도와 내구성의 문제점을 가진다. 이에 본 총설은 알칼리성 매질에서 비귀금속 기반 촉매를 사용하여 산소발생반응 및 수소발생반응을 촉진시킨 촉매 합성 기술을 제시하였다.

시뮬레이션 기반 PEM 수전해 시스템 고장 진단 모델 개발 (Development of a Fault Diagnosis Model for PEM Water Electrolysis System Based on Simulation)

  • 구태형;고락길;노현우;서영민;하동우;현대일;한재영
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.478-489
    • /
    • 2023
  • In this study, fault diagnosis and detection methods developed to ensure the reliability of polymer electrolyte membrane (PEM) hydrogen electrolysis systems have been proposed. The proposed method consists of model development and data generation of the PEM hydrogen electrolysis system, and data-driven fault diagnosis learning model development. The developed fault diagnosis learning model describes how to detect and classify faults in the sensors and components of the system.

흡입용 PEMWE형 수소 발생기에서 증류수 공급 방법이 성능에 미치는 영향 (Effect of Distilled Water Supply Method on Performance of PEMWE Typed Hydrogen Generators for Inhalation)

  • 유인수;배현우;김준현;성재용
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.117-127
    • /
    • 2022
  • The present study has investigated the performance of hydrogen gas generators for inhalation purposes based on polyelectrolyte membrane water electrolysis (PEMWE). The system applied two watering methods. One is pumped water (pumping system) and the other is gravity-fed water without a pump (non-pumping system). The cell efficiencies were compared by measuring the cell voltage and temperature in the hydrogen gas generator, respectively. The results show that the cell voltage and temperature increase with the cell current. The cell temperature is lower in the pumping system than that in the non-pumping system at a given cell current. Even though the amount of hydrogen production is the same regardless of the pumping system, the cell efficiency of the hydrogen gas generator in the non-pumping system is better than that in the pumping system.