• Title/Summary/Keyword: electroless-Ni coated

Search Result 46, Processing Time 0.019 seconds

The Properties of the Metal Hydride electrodes prepared by Silicon Sealant (Si-sealant를 이용하여 제조한 금속수소화물 전극의 특성)

  • CHOI, Jeon;PARK, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.4 no.2
    • /
    • pp.23-28
    • /
    • 1993
  • The $(LM)Ni_{4.5}Co_{0.1}Mn_{0.2}Al_{0.2}$ hydrogen storage alloy powders were conducted 25wt% electroless copper plating in an acidic bath. For the preparation of a hydride electrodes, the copper coated alloy powder was mixed with Si-sealant(organosilicon) and compacted with $6t/cm^2$ at room temperature. The electrode characteristics were examined through electrochemical measurements in a half cell. As a sealant contents increased, the initial discharge capacity of si-sealant bounded electrode was lower and the activation rate in high current density was slower. For extended cycles, however, the electrodes with the Si-sealant were superior in a high rate discharge and useful range of temperature over the sealant-free electrode. In addition, the cycle life increased with increasing the amount of Si-sealant added. It can be suggested from the results that the Si-sealant as a binder could be applied to the preparation of the metal hydride electrode.

  • PDF

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

Deformation behavior of Copper Amorphous Composites in Super Cooled Liquid Region (과냉각 구간에서 Cu-계 아몰퍼스 복합재의 변형거동)

  • Park E. S.;Kim J. S.;Kim H. J.;Bae J. C.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • Composites comprising various volume fractions of crystalline nickel and bulk amorphous (BA) were produced by means of electroless coating of nickel on BA powder of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ and subsequent spark plasma sintering (SPS) of coated BA powder. The flow curves of composites at various temperatures in the supercooled liquid region were determined by the uniaxial compression test with various strain rates. During compression at $450^{\circ}C$ with $\dot{\varepsilon}=2\times10^{-3}$, the monolithic BA sample and crystalline-BA composites displayed the superplastic deformation with $\varepsilon>1.4$. At temperatures above $460^{\circ}C$, the stress-strain curve of the monolithic BA sample depicted a sharp peak stress and a fellowing stress drop due to cracking, while those of the crystalline-BA composites displayed work-hardening up to the imposed strain. FEM analysis indicated that a fairly homogeneous strain state prevailed throughout the composite, while a higher level of stress was obtained in a harder BA.

  • PDF

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

Improvement of Impact Resistance of B4C Tile Inserted B4Cp/Al7075 Hybrid Composites Through Interface Control (B4C tile 삽입 B4Cp/Al7075 하이브리드 복합재의 계면 제어를 통한 내충격 특성의 향상)

  • Park, Jongbok;Lee, Taegyu;Lee, Donghyun;Cho, Seungchan;Lee, Sang-Kwan;Hong, Soon Hyung;Ryu, Ho Jin
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.235-240
    • /
    • 2020
  • In this study, in order to improve the impact resistance of the B4C tile-inserted B4Cp/Al7075 hybrid composite, a control method of the B4C/Al7075 interface was developed and the characteristics of the controlled interface were analyzed. B2O3, Ni, and Si were coated on the B4C tile surface using additional thermal oxidation, electroless plating, and plasma spraying. The coated B4C tile is inserted into the B4Cp/Al7075 composite material using the liquid pressurization method. Interfacial energy, bonding strength, and impact resistance were measured to analyze the effect of the coating. All coatings enhanced interfacial energy, bonding strength, and impact resistance, and in particular, it was confirmed that the impact resistance increased by 86.8% when B2O3 coating was used. This study is significant in developing and analyzing a core surface treatment method that improves the performance of B4C/Al series composites, which are attracting attention as next-generation lightweight amour and bulletproof materials.