• 제목/요약/키워드: electroless Ni-P coating

검색결과 33건 처리시간 0.02초

선박 프로펠러의 케비테이션 침식 저항 향상을 위한 Ni-P 무전해 도금층 형성 및 열처리를 통한 미세조직 제어 (Electroless Ni-P Plating and Heat Treatments of the Coating Layer for Enhancement of the Cavitation Erosion Resistance of Vessel Propellers)

  • 김영재;손인준;이승훈
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.409-415
    • /
    • 2017
  • For enhanced cavitation erosion resistance of vessel propellers, an electroless Ni-P plating method was introduced to form a coating layer with high hardness on the surface of Cu alloy (CAC703C) used as vessel propeller material. An electroless Ni-P plating reaction generated by Fe atoms in the Cu alloy occurred, forming a uniform amorphous layer with P content of ~10 wt%. The amorphous layer transformed to (Ni3P+Ni) two phase structure after heat treatment. Cavitation erosion tests following the ASTM G-32 standard were carried out to relate the microstructural changes by heat treatment and the cavitation erosion resistance in distilled water and 3.5 wt% NaCl solutions. It was possible to obtain excellent cavitation erosion resistance through careful microstructural control of the coating layer, demonstrating that this electroless Ni-P plating process is a viable coating process for the enhancement of the cavitation erosion resistance of vessel propellers.

TiO2 함량에 따르는 무전해 Ni-P-TiO2 복합도금층 특성 연구 (Characterization of the Morphology and Corrosion Resistance in Electroless Ni-P-TiO2 Composite Coating Prepared by TiO2 Contents)

  • 변영민;김호영;이재웅;황환일
    • 한국표면공학회지
    • /
    • 제52권4호
    • /
    • pp.187-193
    • /
    • 2019
  • Electroless Ni-P coatings are widely used in the chemical, mechanical, and electronic industries because of their excellent wear and abrasion resistance. In this study, the effect of $TiO_2$ particles of composite coating was investigated. To improve the corrosion resistance, electroless $Ni-P-TiO_2$composite coating was studied by varying the $TiO_2$ content. The morphology and phase structure of $Ni-P-TiO_2$ composite coatings were analyzed by scanning electron microscopy(SEM), X-ray diffractometry(XRD) and X-ray photoelectron spectroscopy(XPS). The result showed that $Ni-P-TiO_2$composite coating is composed of Ni, P, Ti and O. It exhibits an amorphous structure, high hardness and good corrosion resistance to the substrate. $Ni-P-TiO_2$ composite coatings have higher open circuit potential than that of the substrate, which obtained at $TiO_2$ content of 5.0 g/L optimal integrated properties.

Research on the Solution and Properties of Ni-P/n-$Al_2O_3$ Electroless Composite Plating

  • Huang, Yan-bin;Liu, Fei-fei;Zhang, Qi-yong;Ba, Guo-zhao;Liang, Zhi-jie
    • Corrosion Science and Technology
    • /
    • 제6권5호
    • /
    • pp.257-260
    • /
    • 2007
  • In order to further improve the corrosion resistance and wear resistance of the Ni-P coatings of electroless plating, electroless Ni-P/n-$Al_2O_3$ composite deposits were prepared by adding some nano $Al_2O_3$ Particles in Ni-P plating bath. The bath composition and proproties were studied in this paper. The orthogonal test was applied in order to get the new composite solution, taking the initial stable potential as evaluation standard and considering the elements correlation at the same time. The processing parameters have been optimized by single factor experiment in which the depositing speed was chosen as the evaluation standard. The results showed that the process is stable and the composite Ni-P/n-$Al_2O_3$ deposits werebright and smooth, whose hardness and corrosion resistance are much better than simple Ni-P coatings. Furthermore the surface appearance and structure of the composite Ni-P/n-$Al_2O_3$ coating were investigated by SEM and XRD method. It was proved that the coating surface is typical cystiform cells and its structure is amorphous. All test results ofcomposite coating showed that all various physical coating properties had been improved by adding nano-particles. The hardness of optimal coating is more than 600HV and increases to 1000HV after heat-treating, and its hardness is 20~50% higher than Ni-P coating. The rust points appeared in 200 hour by immersing the coating into the 10%HCl solution and the corrosive speed is $3{\times}10^{-3}mg/(cm^2{\cdot}h)$which was obtained after 300 hour. In the same condition Ni-P coating is $5.6{\times}10^{-3}mg/(cm^2{\cdot}h)$. The salt spray resistance of the layers can exceed 600h with the thickness $20{\mu}m$.

무전해 Ni-P-X(X : $Al_2O_3$, Diamond) 복합도금층의 내마모성 (A Wear Resistance of Electroless Ni-P-X(X : $Al_2O_3$, Diamond) Composite Coating Layers)

  • 김만;장도연;노병호;한성호;이규환
    • 연구논문집
    • /
    • 통권22호
    • /
    • pp.151-160
    • /
    • 1992
  • The wear resistance of electroless Ni-P-X(X A1203, Diamond) composite coating layers was studied by Taber abrasion test technique. The wear resistance of composite coating layers was particularly relied upon the codeposited content, particle size and distribution of particles, and heat treatment of coating layers, as well as the electroless nickel plating bath employed. In this study, we lay emphasis on the wear resistance of electroless composite coating layers containing A1203 particles(1.2~Im, 6.7hIm, 11.5lIm, 20l1m) or diamond particles (1.5jim, 5gm). From the result of composite coating A1203 and diamond particles, the wear resistance of composite coating layers is as follows.

  • PDF

Effect of Ultrasonic Process of Electroless Ni-P-Al2O3 Composite Coatings

  • Yoon, Jin-Doo;Koo, Bon-Heun;Hwang, Hwan-Il;Seo, Sun-Kyo;Park, Jong-Kyu
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.315-323
    • /
    • 2021
  • In general, surface treatments of electroless Ni-P coating are extensively applied in the industry due to their excellent properties for considerable wear resistance, hardness, corrosion resistance. This study aims to determine the effect of ultrasonic conditions on the morphology, alumina content, roughness, hardness, and corrosion resistance of electroless Ni-P-Al2O3 composite coatings. The characteristics were analyzed by Energy-dispersive X-ray spectroscopy (EDX), x-ray diffractions (XRD), and atomic force microscopy (AFM), etc. In this study, the effect of ultrasonic condition uniformly distributed alumina within Ni-P solution resulting in a smoother surface, lower surface roughness. Furthermore, the corrosion resistance behavior of the coating was analyzed using tafel polarization curves in a 3.5 wt.% NaCl solution at 25 ℃. Under ultrasonic, Al2O3 content in Ni-P composite solution increased from 0.5 to 5.0 g/L, Al2O3 content at 3.0 g/L was showed a significantly enhanced corrosion resistance. These results suggested that ultrasonic condition was an effective method to improve the properties of the composite coating.

ENIG 표면처리 공정 및 특성에 관한 연구 (A Study on the ENIG Surface Finish Process and Its Properties)

  • 이홍기;손성호;이호영;전준미
    • 한국표면공학회지
    • /
    • 제40권1호
    • /
    • pp.32-38
    • /
    • 2007
  • Ni coating layers were formed using a newly developed electroless Ni plating solution. The properties of Ni coating layer such as internal stress, hardness, surface roughness, crystallinity, solderability and surface morphology were investigated using various tools. Results revealed that internal stress decreased with plating time and reached $40N/mm^2$ at 20 minutes of the plating time. Hardness increased with increasing P content and thickness. Surface roughness of the pad decreased with Ni and Ni/Au plating. Crystallinity decreased with increasing P content. Solderability based on wettability decreased with Ni and Ni/Au plating. Based on surface morphology, it is expected that Ni coating layer formed using a newly developed electroless Ni plating solution is lower than that formed using a commercial electroless Ni plating solution in possibility of black pad occurrence.

비시안 무전해 Au 도금의 석출거동에 미치는 하지층 무전해 Ni-P 도금 조건의 영향 (Effect of underlayer electroless Ni-P plating on deposition behavior of cyanide-free electroless Au plating)

  • 김동현;한재호
    • 한국표면공학회지
    • /
    • 제55권5호
    • /
    • pp.299-307
    • /
    • 2022
  • Gold plating is used as a coating of connector in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. In most cases, internal connection between device and package and external terminals for connecting packaging and printed circuit board are electroless Ni-P plating followed by immersion Au plating (ENIG) to ensure connection reliability. The deposition behavior and film properties of electroless Au plating are affected by P content, grain size and mixed impurity components in the electroless Ni-P alloy film used as the underlayer plating. In this study, the correlation between electroless nickel plating used as a underlayer layer and cyanide-free electroless Au plating using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated.

pH에 따른 무전해Ni-P-PTFE 복합도금의 표면형상 및 내식성에 대한 특성 연구 (Characterization of the Morphology and Corrosion Resistance in Electroless Ni-P-PTFE Composite Coating Prepared by Different pH Value)

  • 변영민;서선교;윤진두;나상조;류창환;황환일
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.156-162
    • /
    • 2019
  • Electroless Ni-P coatings are widely used in the chemical, mechanical, and electronic industries because of their excellent wear and abrasion resistance. In this study, The influence of pH values on properties of Ni-P-PTFE composite coatings was investigated. To improve mold lubrication, Ni-P-PTFE composite coatings at different pH value were studied. The morphology and phase structure of Ni-P-PTFE composite coatings were analyzed by scanning electron microscopy(SEM) and X-ray diffractometry(XRD). The result showed that Ni-P-PTFE composite coating is composed of Ni, P and PTFE. It exhibits an amorphous structure and good Corrosion Resistance to the substrate. Ni-P-PTFE composite coatings have higher open circuit potential than that of the substrate, which obtained at pH value of 5.0 optimal integrated properties.

무전해 니켈도금과 무전해복합도금(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond)의 내마모성 비교 (The Wear Resistance of Electroless Nickel and Electroless Composite(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond) Coating Layers)

  • 김만;장도연;정용수;노병호;이규환
    • 한국표면공학회지
    • /
    • 제27권4호
    • /
    • pp.193-206
    • /
    • 1994
  • A wear behavior of electroless (Ni-P-X, X: SiC, $Al_2O_3$, Diamond) composite coating layers, formed under various conditions on commerical grade low carbon steel, has been investigated using Taber abrasion tester and scanning electron microscope. Several factors, which are type of particles, co-deposited content, particle size, distribution of particles and heat-treatment, influenced the wear resistance. The wear resistance of the composited coating layers after heat-treatment at $400^{\circ}C$ for 1 hr was increased 70 times with diamond, 15 times with SiC and 8 times with $Al_2O_3$, compared with the electroless nickel plating layer without heat-treatment.

  • PDF

무전해도금법으로 형성한 Ni-P-SiC 복합도금막의 특성 (Properties of Ni-P-SiC Composite Coating Layers Prepared by Electroless Plating Method)

  • 이홍기;이호영;전준미
    • 한국표면공학회지
    • /
    • 제40권2호
    • /
    • pp.70-76
    • /
    • 2007
  • Ni-P-SiC composite coating layers were prepared by electroless plating method and their deposition rate, codeposition of SiC, morphology, surface roughness, hardness, wear and friction properties were investigated. The deposition rate was kept almost constant independent of the concentration of SiC in the plating solution and the codeposition of SiC in the composite coating layer increased with increased concentration of SiC in the plating solution except the early stage. Vickers microhardness increased with respect to the increased codeposition of SiC and the heat treatment at $300^{\circ}C$ in air for 1 hour. It was found that the wear volume decreased with increased up to 50 wt.% of SiC codeposition, and that friction coefficient increased gradually with increased codeposition of SiC. Considering the wear and the friction behaviors, the composite coating layer obtained by using 50 wt.% of SiC codeposition is desirable for the practical application for anti-wear and anti-friction coatings.