• Title/Summary/Keyword: electroencephalogram(EEG)

Search Result 408, Processing Time 0.039 seconds

Optimal EEG Locations for EEG Feature Extraction with Application to User's Intension using a Robust Neuro-Fuzzy System in BCI

  • Lee, Chang Young;Aliyu, Ibrahim;Lim, Chang Gyoon
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.167-183
    • /
    • 2018
  • Electroencephalogram (EEG) recording provides a new way to support human-machine communication. It gives us an opportunity to analyze the neuro-dynamics of human cognition. Machine learning is a powerful for the EEG classification. In addition, machine learning can compensate for high variability of EEG when analyzing data in real time. However, the optimal EEG electrode location must be prioritized in order to extract the most relevant features from brain wave data. In this paper, we propose an intelligent system model for the extraction of EEG data by training the optimal electrode location of EEG in a specific problem. The proposed system is basically a fuzzy system and uses a neural network structurally. The fuzzy clustering method is used to determine the optimal number of fuzzy rules using the features extracted from the EEG data. The parameters and weight values found in the process of determining the number of rules determined here must be tuned for optimization in the learning process. Genetic algorithms are used to obtain optimized parameters. We present useful results by using optimal rule numbers and non - symmetric membership function using EEG data for four movements with the right arm through various experiments.

A Method for Estimation and Elimination of EGG Artifacts from Scalp EEG Using the Least Squares Acceleration Based Adaptive Digital Filter (최소 제곱 가속 기반의 적응 디지털 필터를 이용한 두피 뇌전도에서의 심전도 잡음 추정 및 제거)

  • Cho, Sung-Pil;Song, Mi-Hye;Park, Ho-Dong;Lee, Kyoung-Joung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1331-1338
    • /
    • 2007
  • A new method for detecting and eliminating the Electrocardiogram(ECG) artifact from the scalp Electroencephalogram(EEG) is proposed. Based on the single channel EEG, the proposed method consists of 4 procedures: emphasizing the R-wave of ECG artifact from EEG using the least squares acceleration(LSA) filter, detecting the R-wave from the LSA filtered EEG using the phase space method and R-R interval, generating the delayed impulse synchronized to the R-wave and elimination of the ECG artifacts based on the adaptive digital filter using the impulse and raw EEG. The performance of the proposed method was evaluated in the two separating parts of R-wave detection and, ECG estimation and elimination from EEG. In the R-wave detection, the proposed method showed the mean error rate of 6.285(%). In the ECG estimation and elimination using simulated and/or real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, in which independent component analysis and ensemble average method are used. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifact from single channel EEG and simple for ambulatory/portable EEG monitoring system.

Analysis of Electroencephalogram Electrode Position and Spectral Feature for Emotion Recognition (정서 인지를 위한 뇌파 전극 위치 및 주파수 특징 분석)

  • Chung, Seong-Youb;Yoon, Hyun-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • This paper presents a statistical analysis method for the selection of electroencephalogram (EEG) electrode positions and spectral features to recognize emotion, where emotional valence and arousal are classified into three and two levels, respectively. Ten experiments for a subject were performed under three categorized IAPS (International Affective Picture System) pictures, i.e., high valence and high arousal, medium valence and low arousal, and low valence and high arousal. The electroencephalogram was recorded from 12 sites according to the international 10~20 system referenced to Cz. The statistical analysis approach using ANOVA with Tukey's HSD is employed to identify statistically significant EEG electrode positions and spectral features in the emotion recognition.

The Review on the Domestic Korean Medicine Studies of Electroencephalogram (뇌파 관련 국내 한의학 연구에 대한 고찰)

  • Byun, Hyuk;Lee, Jin-Ho;Jung, Chan-Yung;Kim, Eun-Jung;Lee, Jae-Dong;Choi, Do-Young;Kim, Kap-Sung;Lee, Seung-Deok
    • Journal of Acupuncture Research
    • /
    • v.27 no.1
    • /
    • pp.137-148
    • /
    • 2010
  • Objectives : To research the changes of electroencephalogram(EEG) signals for acupuncture stimulation and to establish the hereafter direction for the study on EEG. Methods : We reviewed the domestic papers searched by search engine of Korean Acupuncture & Moxibustion Society and Korea Institute of Oriental Medicine. Results : We have searched 31 articles in 10 journals. The 13 articles were concerned with acupuncture. 1. All articles were published after 2001. In 2007 there were 10 articles. 2. The studies dealing with the changes of EEG signals were 24, the studies dealing with correlation of EEG signals were 5, and the studies analyzing EEG with Korean medicine were 2. 3. In the studies dealing with the changes of EEG signals, the case-control studies were 9, the non case-control studies were 14, and the case study was 1. 10 studies used electro-acupuncture, 1 study used herbal acupuncture, and 2 studies used manual acupuncture. Conclusions : We need more various kinds of studies. 1. Excited condition by acupuncture stimulation may reduce $\alpha$ wave. 2. There may be the acupuncture point-specific variation of EEG signal patterns. 3. The number of responding channels for acupuncture stimulation may correlate with the quantity or variety of acupuncture effect.

Music classification system through emotion recognition based on regression model of music signal and electroencephalogram features (음악신호와 뇌파 특징의 회귀 모델 기반 감정 인식을 통한 음악 분류 시스템)

  • Lee, Ju-Hwan;Kim, Jin-Young;Jeong, Dong-Ki;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.115-121
    • /
    • 2022
  • In this paper, we propose a music classification system according to user emotions using Electroencephalogram (EEG) features that appear when listening to music. In the proposed system, the relationship between the emotional EEG features extracted from EEG signals and the auditory features extracted from music signals is learned through a deep regression neural network. The proposed system based on the regression model automatically generates EEG features mapped to the auditory characteristics of the input music, and automatically classifies music by applying these features to an attention-based deep neural network. The experimental results suggest the music classification accuracy of the proposed automatic music classification framework.

EEG Signal Classification based on SVM Algorithm (SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류)

  • Rhee, Sang-Won;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2020
  • In this paper, we measured the user's EEG signal and classified the EEG signal using the Support Vector Machine algorithm and measured the accuracy of the signal. An experiment was conducted to measure the user's EEG signals by separating men and women, and a single channel EEG device was used for EEG signal measurements. The results of measuring users' EEG signals using EEG devices were analyzed using R. In addition, data in the study was predicted using a 80:20 ratio between training data and test data by applying a combination of specific vectors with the highest classifying performance of the SVM, and thus the predicted accuracy of 93.2% of the recognition rate. This paper suggested that the user's EEG signal could be recognized at about 93.2 percent, and that it can be performed only by simple linear classification of the SVM algorithm, which can be used variously for biometrics using EEG signals.

A Study on the Physiological Responses to the Texture (고감성 직물 소재의 생리학적 접근에 관한 고찰)

  • 최인려
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.5
    • /
    • pp.702-706
    • /
    • 2004
  • Sensorial tests were executed to find the sensibility and texture of the fabrics. The physiological responses employed in this study was electroencephalogram(EEG). The purpose of this study is to find out how the sample groups responded to the texture of the woven silks and the woven ramie. The sample groups are of 10 males and females, age of 25. EEG was recorded a fast and slow alpha wave according to the texture of the textiles. The sample fabrics are of woven silk and woven ramie. The results obtained as be lows. When the sample groups touched the woven silk, they responded and showed more slow alpha wave than the woven ramie. The slow alpha wave raised when the sample groups felt comfort and relax. The fast alpha wave were more in the woven ramie, it raised when the people felt the tension and the anxiety. There was no significant difference between the male and the female. Woven silk has the soft and smoothness it causes comfort. The sensation of tactile was recorded through the EEG.

  • PDF

A Study on Comfortableness Evaluation Technique of Chairs using Electroencephalogram (뇌파를 이용한 의자의 쾌적성 평가 기술에 관한 연구)

  • 김동준
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.702-707
    • /
    • 2003
  • This study describes a new technique for human sensibility evaluation using electroencephalogram(EEG). Production of EEG is assumed to be linear. The linear predictor coefficients and the linear cepstral coefficients of EEG are used as the feature parameters of sensibility and pattern classification performances of them are compared. Using the better parameter, a human sensibility evaluation algorithm is designed. The obtained results are as follows. The linear predictor coefficients showed the better performance in pattern classification than the linear cepstral coefficients. Then, using the linear predictor coefficients as the feature parameter, a human sensibility evaluation algorithm is developed at the base of a multi-layer neural network. This algorithm showed 90% of accuracy in comfortableness evaluation in spite of fluctuations in statistics of EEG signal.

A design of FFT processor for EEG signal analysis (뇌전기파 분석용 FFT 프로세서 설계)

  • Kim, Eun-Suk;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2548-2554
    • /
    • 2010
  • This paper describes a design of fast Fourier transform(FFT) processor for EEG(electroencephalogram) signal analysis for health care services. Hamming window function with 1/2 overlapping is adopted to perform short-time FFT(ST-FFT) of a long period EEG signal occurred in real-time. In order to analyze efficiently EEG signals which have frequency characteristics in the range of 0 Hz to 100 Hz, a 256-point FFT processor is designed, which is based on a single-memory bank architecture and the radix-4 algorithm. The designed FFT processor has been verified by FPGA implementation, and has high accuracy with arithmetic error less than 2%.