• 제목/요약/키워드: electrodynamic suspension

검색결과 18건 처리시간 0.021초

Analysis and Optimization of Permanent Magnet Dimensions in Electrodynamic Suspension Systems

  • Hasanzadeh, Saeed;Rezaei, Hossein;Qiyassi, Ehsan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.307-314
    • /
    • 2018
  • In this paper, analytical modeling of lift and drag forces in permanent magnet electrodynamic suspension systems (PM EDSs) are presented. After studying the impacts of PM dimensions on the permanent magnetic field and developed lift force, it is indicated that there is an optimum PM length in a specified thickness for a maximum lift force. Therefore, the optimum PM length for achieving maximum lift force is obtained. Afterward, an objective design optimization is proposed to increase the lift force and to decrease the material cost of the system by using Genetic Algorithm. The results confirm that the required values of the lift force can be achieved; while, reducing the system material cost. Finite Element Analysis (FEA) and experimental tests are carried out to evaluate the effectiveness of the PM EDS system model and the proposed optimization method. Finally, a number of design guidelines are extracted.

초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석 (Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet)

  • 이응로;배덕권;정윤도;윤용수;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권1호
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

Halbach 배열 영구자석을 이용한 자기 부상계의 해석에 관한 연구 (An Analytical Study on the Magnetic Levitation System Using a Halbach Magnet Array)

  • 문석준;윤동원;조흥제;박성환;김병현
    • 한국소음진동공학회논문집
    • /
    • 제17권11호
    • /
    • pp.1077-1085
    • /
    • 2007
  • Typically, three types of levitation technologies are applied to magnetic levitation systems: electromagnetic suspension, electrodynamic suspension, and hybrid electromagnetic suspension. A Halbach array is a special arrangement of permanent magnets which augments the magnetic field on one side of the device while cancelling the field to near zero on the other side. The application of this Halbach array magnet to the electrodynamic suspension has been recently studied in order to increase the levitation capability. This paper is focused on an analytical method of the magnetic levitation system using Halbach array magnet. The suitability of the proposed method is verified with comparing to the finite element method. In addition, dynamic stability of the magnetic levitation system is discussed. From this study, it is confirmed that the proposed method provides a reasonable solution with less computation time compared to the finite element method and the magnetic levitation system using Halbach array magnet is stable dynamically.

초고속 자기부상열차를 위한 초전도 반발식 자기부상 특성 해석 (Analysis on Superconducting Electrodynamic Suspension for Very High Speed Maglev)

  • 배덕권;이종민;조한욱;한형석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.198-200
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator. Superconducting EDS system is generated by the interaction between the magnetic field made by the induced the eddy current in the ground conductor and the moving magnetic field made by onboard superconducting magnet. The levitation force of EDS system, which is proportional to the strength of the moving magnetic field, becomes saturated according to the increase of the velocity Especially, the levitation force is influenced by the structure of HTS magnet and ground conductor. The 3-D numerical analysis with FEM was used to find the distribution of the magnetic field, the optimal coil structure, and the calculation of the levitation force.

  • PDF

소형 초전도 부상자석의 특성 연구 (Study on the Characteristics of a Small Scale HTSC Levitation Magnet)

  • 조흥제;배덕권;이종민;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.76-81
    • /
    • 2007
  • This paper deals with the characteristics of a small scale $high-T_c$ superconducting(HTSC) levitation system. The levitation tester. which models after electrodynamic suspension(EDS) maglev, consists of one HTSC magnet, a reaction plate, and force measuring components. Instead of moving magnet, AC current was applied to the fixed HTSC magnet. The magnet also has persistent current switch(PCS). The inductance of the magnet was 18.5 mH and total joint resistance of the magnet was $5.74{\times}10^{-7}\Omega$. AC current was applied into the HTSC magnet with various frequencies and the levitation force was calculated and measured. According to the increase of the vehicle speed, the levitation force was saturated.

반발식 자기부상열차의 동특성해석을 위한 전자력계산 (Analysis of magnetic forces for dynamic characteristics of electrodynamic Maglcv Systcm)

  • 홍순흠;한송엽;차귀수
    • 한국자기학회지
    • /
    • 제4권2호
    • /
    • pp.106-113
    • /
    • 1994
  • 초전도 반발식 자기부상열차의 동특성을 해석하기 위하여 외력에 의하여 대차가 기울어진 경우에 차량에 가해지는 전자력을 계산하였다. 집중부하방식의 열차에 있어서 크게 나타나는 단부효과 를 고려하기 위하여 공극자속의 형태에 대한 가정없이 자속분포를 계산하였으며, 대차의 옆질(roll), 뒷질(pitch) 및 편주(yaw)시의 전자력특성과 복원토오크를 검토하였다. 6개의 초전도자석이 탑재된 대 차가 차량의 양쪽에 설치된 열차에 대해서 계산한 결과, 토오크의 방향은 차량을 안정하게 하는 방향 으로 나타나서 본 자기부상시스템은 기본적으로 안정한 시스템임을 보여주고 있다.

  • PDF

반발식 자기부상열차의 정특성해석 (Static Characteristics of Electrodynamic Maglev System)

  • 홍순흠;이양수;차귀수;한송엽
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1067-1074
    • /
    • 1994
  • This paper deals with the combined levitation and guidance EDS(Electrodynamic Suspension) Maglev system. Levitation and guidance forces generated in figured-of-eight coil are examined. End effect of Superconducting magnets is considered in that the air gap flux has been calculated using the finite number of magnets. Induced emfs and currents of ground coils are given as results. Eletromagnetic forces vary according to the built-in position of magnets. Levitation forces of the first magnet pair are the smellest and those of the second one are the largest. This result shows that the end effect of SCMs should be considered in a concentrated magnet system.

  • PDF

초전도 유도 반발식 부상특성을 고려한 캡슐트레인 동특성 해석 모델 구축 및 주행 특성 분석 (Capsule Train Dynamic Model Development and Driving Characteristic Analysis Considering the Superconductor Electrodynamic Suspension)

  • 이진호;임정열;유원희;이관섭
    • 한국산학기술학회논문지
    • /
    • 제21권7호
    • /
    • pp.38-45
    • /
    • 2020
  • 아진공 튜브 안을 부상한 상태로 주행하는 캡슐트레인은 공기저항력 및 마찰력을 획기적으로 줄임으로써 초고속 주행이 가능하다. 캡슐트레인에서 부상방식으로 사용되는 초전도 유도 반발식 부상은 부상 공극이 커서 인프라 건설비용이 저렴하고 별도의 부상제어가 필요 없는 장점이 있지만, 부상·안내 공극의 변화가 크고 부상 및 안내력에 댐핑 특성이 작아 주행 안정성 및 승차감을 악화시킬 수 있다. 본 연구에서는 초전도 유도 반발식 부상방식에 기반한 캡슐트레인의 동특성 해석 모델을 구축하고 이를 활용하여 캡슐트레인의 주행 특성을 분석하였다. 먼저 초전도 유도 반발식 부상에 있어서 동특성에 중요한 영향을 미치고 속도 및 공극 변화에 따라 비선형적인 특성을 보이는 부상 및 안내 강성을 도출하였고, 이러한 강성이 반영된 캡슐트레인의 3D 동특성 해석 모델을 구축하였다. 구축된 모델을 이용하여 캡슐트레인의 속도별 주행 특성이 승차감에 미치는 영향과 곡선 주행, 튜브 처짐 및 튜브 연결부 단차 등과 같은 주행 환경이 차량의 동특성 및 주행 안정성에 미치는 영향을 검토하였다.

한국형 차세대 자기부상열차 개발을 위한 선진기술분석 및 국내연구현황 (Status of Advanced Tecnhologies and Domestic Researches for Development of Korean Next Generation Maglev)

  • 조한욱;방제성;한형석;성호경;김동성;김병현
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1767-1776
    • /
    • 2008
  • This paper presents the status of advanced technologies and domestic researches for development of Korean next generation maglev. Generally, two specific configurations such as the EMS (Electromagnetic Suspension) with LSM (Linear Synchronous Motor) and EDS (Electrodynamic Suspension) with LSM can be employed as a propulsion and levitation device of high-speed maglev. Worldwide high-speed maglev developments refer to projects such as the German Transrapid with EMS, the Japanese MLX with EDS, and the U.S. Inductrack with PM (Permanent Magnet) EDS maglev system. In this paper, the propulsion and levitation systems of these world wide high-speed maglev have been reviewed and analysed.

고온초전도 자기부상 마그네트 (High-Tc Superconducting Levitation Magnet)

  • 배덕권;조흥제;김봉섭;조정민;성호경;김동성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.681-682
    • /
    • 2006
  • This paper deals with the preliminary study on the HTSC levitation magnet for MAGLEV operating in persistent current mode (PCM). The high temperature superconducting (HTSC) levitation magnet consists of two single-pancake type coils wound with Bi-2223 wire and a persistent current switch (PCS). The levitation magnet was designed by using 3-D finite element analysis. The suspension system for high-speed electrodynamic suspension (EDS) maglev should operated in persistent current mode. It is important to develop a technology to minimize the joint resistance of splice between two HTSC wires. The PCS was observed with respect to various magnitude of charging current. Based on these results, the levitation system using HTSC wire will be further studied.

  • PDF