• 제목/요약/키워드: electrode thickness

검색결과 853건 처리시간 0.037초

대기압하에서 액체질소(LN2)방전특성에 관한 연구 (A study on the discharge characteristics of liquid nitrogen at atmospheric pressure)

  • 이영근;주재현;김상구;이광식;이동인
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1993년도 추계학술발표회논문집
    • /
    • pp.58-62
    • /
    • 1993
  • This paper shows the discharge characteristics of liquid nitrogen under plane to plane electrode, needle to plance electrode, inserting teflon insulator in plane to plane electrode at atmospheric pressure. The main experimental device of this paper is cryostat. The important results obtained from this study are sa follows. Breakdown voltage of LN2 under N-P electrode is higher than that of under P-P electrode at atmospheric pressure. Breakdown duration time is longer with increase of electode gap under the P-P, N-P electrodes. The formation of bubbles by evaporation is observed in spite of non-applying source at atmospheric pressure and the creation of corona confirmed. Breakdown voltage and breakdown duration time are in proportion to increase of diameter in case of inserting teflon insulator. Partial discharge characteristics of thickness 0.5[mm] is that 채굼 voltage of teflon insulator rose with increase of diameter in each [pps].

  • PDF

디스크형 압전 변압기의 전극 대칭성에 따른 전기적 특성 (A study on the electrical characteristics with the electrode symmetry of a disk-type piezoelectric transformer)

  • 이종필
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.835-840
    • /
    • 2011
  • 본 연구에서는 직경이 50mm, 두께가 4.5mm인 디스크형 압전 변압기의 구동부와 발전부의 전극에 대한 대칭성을 고려하여 2, 4 및 8등분으로 각각 분할하였다. 이렇게 분할된 압전 변압기에 부하저항을 변화($100{\Omega}{\sim}10_{K\Omega}$)시키면서 전기적 특성을 측정하고, 이를 토대로 한 압전변압기의 승압비 및 효율에 관한 메카니즘을 정량적으로 해석하였다.

경사 전기장 구동에 의한 수평배열 액정 디스플레이의 전기광학특성 연구 (Electro-optic characteristic of homogeneously aligned LCD driven by an oblique field)

  • 박상현;이지연;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.104-108
    • /
    • 2005
  • We have studied electrode-optic characteristics of IPS (in-plane switching) mode with electrode on top substrate. Because the IPS mode does not have electrode on top substrate. it shows not only slow response time due to weak electric field but also slow discharging problem when electrostatic field is generated after fabricating the cell. To solve these problems. we have formed additional electrode including dielectric layer in the inner part of the cell and studied electrode-optic characteristics of new IPS cell by changing thickness of dielectric layer.

  • PDF

FFS 모드의 공통전극과 화소전극 사이의 절연층 두께에 따른 전기광학 특성 (Electro-Optic Characteristics of the Fringe Field Switching (FFS) Mode Depending on Thickness of Passivation Layer between Pixel and Common Electrodes)

  • 정준호;하경수;임영진;유일수;정연학;유재진;김경현;이승희
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.589-594
    • /
    • 2009
  • We have studied electro-optic characteristics as a function of passivation thickness existing between common electrode and pixel electrodes in the fringe-field switching (FFS) mode using the LC with positive dielectric anisotropy. A steep increase in the transmission is observed with increase in the passivation layer from $0.29{\mu}m$ to $1.09{\mu}m$ and thereafter it almost saturates over the $1.09{\mu}m$ of passivation layer. This saturation is mainly associated with correlation between transmittance at the center region of pixel electrode and at the center region between pixel electrodes. From the results, optimal thickness of passivation layer can be defined.

Mo:Na두께에 따른 Cu(In,Ga)Se2 태양전지 박막의 효율 특성 (Efficiency Characteristics of Cu(In,Ga)Se2 Photovoltaic Thin Films According to the Mo:Na Thickness)

  • 신윤학;김명한
    • 한국전기전자재료학회논문지
    • /
    • 제26권9호
    • /
    • pp.701-706
    • /
    • 2013
  • We have focused on the conversion efficiency of CIGS thin film solar cell prepared by co-evaporation method as well as the optimization of process condition. The total thickness of back electrode was fixed at 1 ${\mu}m$ and the structural, electric and optical properties of CIGS thin film were investigated by varying the thickness of Mo:Na bottom layer from 0 to 500 nm. From the experimental results, the content of Na was appeared as 0.28 atomic percent when the thickness of Mo:Na layer was 300 nm with compactly densified plate-shape surface morphology. From the XRD measurements, (112) plane was the strongest preferential orientation together with secondary (220) and (204) planes affecting to the crystallization. The lowest roughness and resistivity were 2.67 nm and 3.9 ${\Omega}{\cdot}cm$, respectively. In addition, very high carrier density and hole mobility were recorded. From the optimization of Mo:Na layer, we have achieved the conversion efficiency of 9.59 percent.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • 강경호;권영수;송인영;박성해;박태호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Trace Mercury Determination by Differential Pulse Anodic Stripping Voltammetry Using Polythiophene-Quinoline/Glassy Carbon Modified Electrode

  • Yoo, Kwang-Sik;Woo, Sang-Beom;Jyoung, Jy-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.27-31
    • /
    • 2003
  • A Polythiophene-quinoline/glassy carbon (PTQ/GC) modified electrode was developed for the determination of trace mercury in industrial waste water, natural water, soil, and other media. The electrode was prepared by the cyclic voltammetric polymerization of thiophene and quinoline on glassy carbon (GC) electrode by the potential application from -0.6 V to +2.0 V (50 mV/sec) in a solution of 0.1 M thiophene, quinoline and tetrabutyl ammonium perchlorate (TBAP) in acetonitrile. Optimum thickness of the polymer membrane on the GC electrode was obtained with 20 repeated potential cyclings. The redox behavior of Cu(Ⅱ) and Hg(Ⅱ) were almost identical on this electrode. The addition of 4-(2-pyridylazo)resorcinol (PAR) to the solution containing Cu(Ⅱ) and Hg(Ⅱ) allowed the separation of the components due to the formation of the Cu(Ⅱ)-PAR complex reduced at -0.8V, which was different from the Hg(Ⅱ) reduced at -0.5 V on a saturated calomel electrode (SCE). The calibration graph of Hg(Ⅱ) shows good linear relationship with the correlation factor of 0.9995 and the concentration gradient of 0.33 ㎂/㎠/ppb down to 0.4 ppb Hg. The method developed was successfully applied to the determination of mercury in samples such as river, waste water, and sea water.

Copper oxide/n-Si 전극의 광전기화학 변환 특성과 안정성에 미치는 Pt 층의 영향 (Effect of Pt Layers on the Photoelectrochemical Properties and Stability of a Copper Oxide/n-Si Electrode)

  • 윤기현;홍석건;강동헌
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.263-270
    • /
    • 2000
  • The Pt/copper oxide/n-Si electrodes were fabricated by depositing copper oxide thin film of 500${\AA}$ and very thin Pt layer on the n-type (100) Si substrate. hotoelectrochemical properties and stability profiles of the electrodes were investigated as a function of deposition time of Pt layer. As the deposition time of Pt layer increased up to 10 seconds, the photocurrent and quantum efficiency were increased and then decreased with further depositing time. The better cell stability was observed for the electrode with longer deposition time. The improvements in above photoelectrochemical properties indicate that Pt layer acts as a catalyst layer at electrode/electrolyte interface as well as a protective layer. The decreasing tendency of the photocurrent and efficiency for the electrode with Pt layer deposited above 20 seconds was explained as an increases in probbility of electron-hole pair recombination and also the absorbing photon loss at electrode surface due to the excessive thickness of Pt layer. The results were confirmed by impedance spectroscopy, mutiple cycle voltammograms and microstructural analyses.

  • PDF

전극질량 변화에 따른 SMD형 변성 PbTiO3세라믹 공진자의 공진특성 (Resonant Characteristics of SMD Type - Modified PbTiO3 Ceramic Resonator with the Variations of Electrode Weight)

  • 오동언;류주현;박창엽;류성림;김종선;정영호
    • 한국전기전자재료학회논문지
    • /
    • 제16권3호
    • /
    • pp.202-206
    • /
    • 2003
  • In this study, modified PbTi $O_3$ ceramics was manufactured to apply for 30MHz SMD type ceramic resonator with the variations of electrode weight. To investigate the effects of electrode weight on resonant characteristics of ceramic resonator using 3$^{rd}$ overtone thickness vibration mode, ceramic wafers for resonator were fabricated by evaporating electrode weights of 0.66, 1.765, 2.32, 3.87$\times$ 10$^{-4}$ g/c $m^2$ with silver, respectively. And then, SMD type ceramic resonators were fabricated with the size of 3.7$\times$3.1mm and electrode radius size of 0.77mm. With increasing electrode weight, resonant resistance was gradually decreased. At the electrode weight of 2.32$\times$10$_{-4}$ g/c $m^2$, mechanical quality factor( $Q_{mt3}$) and dynamic range(D.R) showed the maximum value of 2,152 and 49dB, respectively.

A Study on Improvement of a-Si:H TFT Operating Speed

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.42-44
    • /
    • 2007
  • The a-Si:H TFTs decreasing parasitic capacitance of source-drain is fabricated on glass. The structure of a-Si:H TFTs is inverted staggered. The gate electrode is formed by patterning with length of $8{\mu}m{\sim}16{\mu}m$ and width of $80{\sim}200{\mu}m$ after depositing with gate electrode (Cr) $1500{\AA}$ under coming 7059 glass substrate. We have fabricated a-SiN:H, conductor, etch-stopper and photoresistor on gate electrode in sequence, respectively. The thickness of these, thin films is formed with a-SiN:H ($2000{\mu}m$), a-Si:H($2000{\mu}m$) and $n^+a-Si:H$ ($500{\mu}m$). We have deposited $n^+a-Si:H$, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-stopper pattern. The NPR layer by inverting pattern of upper gate electrode is patterned and the $n^+a-Si:H$ layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. The a-Si:H TFTs decreasing parasitic capacitance of source-drain show drain current of $8{\mu}A$ at 20 gate voltages, $I_{on}/I_{off}$ ratio of ${\sim}10^8$ and $V_{th}$ of 4 volts.