• Title/Summary/Keyword: electrode polarization

Search Result 365, Processing Time 0.028 seconds

Modified Agglomerated Film Model Applied to a Molten Carbonate Fuel Cell Cathode (실측자료를 이용한 Agglomerated Film Model의 용융탄산염 연료전지 산소전극 성능모사)

  • 임준혁;김태근
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.593-603
    • /
    • 1996
  • A dual-porosity filmed agglomerate model for the porous cathode of the molten carbonate fuel has been investigated to predict the cell performance. A phenomenological treatment of molecular, kinetic and electrode parameters has been given. The major physical and chemical phenomena being modeled include mass transfer, ohmic losses and reaction kinetics at the electrode- electrolyte interface. The model predicts steady-state cell performance, given the above conditions that characterize the state of the electrode. Quasi-linearization and finite difference techniques are used to solve the coupled nonlinear differential equations. Also, the effective surface area of electrode pore was obtained by mercury porosimeter. The results of the investigation are presented in the form of plots of overpotential vs. current density with varied the electrode material, gas composition and mechanism. The predicted polarization curves are compared with the empirical data from 1 c$m^2$ cell. A fair correspondence is observed.

  • PDF

Characteristics of PZT thin films with varying the bottom-electrodes and buffer layer (PZT 박막제조시 하부전극과 buffer층에 따른 박막특성에 관한 연구)

  • 이희수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.177-184
    • /
    • 1996
  • We adopted the $Pt/SiO_{2}/Si$ and the $Ir/SiO_{2}/Si$ substrates of which buffer layer is $PbTiO_{3}$ to improve electrode and interfacial properties of PZT thin film deposited by reactive sputtering method using metal target in this study. We got PZT thin film to have highly oriented(100) structure and good crystallinity using buffer layer in Pt bottom-electrode, though randomly oriented PZT thin film was obtained without buffer layer. Although great improvement of PZT phase formation on Ir bottom-electrode with buffer layer was not observed, we observed the increase of remennant polarization and the decrease of coercive field compared with properties of PZT thin films on the Pt bottom-electrode. So we got the results of the increase of dielectric constant using buffer layer on fabrication of PZT thin film and the better dielectric properties in PZT thin film using Ir bottom-electrode compared with that using Pt bottom-electrode.

  • PDF

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure (나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용)

  • Min Sik, Kil;Min Jae, Kim;Jo Hee, Yoon;Jinwu, Jang;Kyoung G., Lee;Bong Gill, Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

Decal Method with High Catalyst Transfer Ratio and Its Performance in PEMFC

  • Park, Hyun-Seo;Cho, Yong-Hun;Cho, Yoon-Hwan;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.169-171
    • /
    • 2007
  • A breaking layer was introduced to conventional decal transfer method in membrane electrolyte assembly fabrication for high catalyst transfer ratio. In this study, the modified decal transfer method with high catalyst transfer ratio was introduced and its performance is studied. The structural features of electrodes made by decal method were investigated using scanning electron microscopy and current-voltage polarization measurement.

  • PDF

Simulation for transport phenomena of DMFC (Direct Methanol Fuel Cell) (직접메탄올 연료전지내 전달현상에 대한 전산 모사)

  • Im, Hun-Suk;Kim, Yo-Jin;Hong, Won-Hi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.490-493
    • /
    • 2006
  • The results of simulation of direct methane fuel cell fed with liquid-state methanol feed are shown. This numerical process is based on mass and current conservation equations. The results showed that over low current density $(<200mA/cm^2)$ IV polarization curve was well-presented compared to experimental result. Methanol fed from anodic side moved into cathodic side through electrolyte membrane and the pressure near cathode electrode increased according to amount of methanol crossover and production of water. Besides change of overpotential on each el electrode were checked by x-axis.

  • PDF

A study on the space charge polarization and electrical conduction in the dielectrics (유전체의 공간전하분극과 전기전도에 관한 연구)

  • 김영근;윤성도;이경섭;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.79-82
    • /
    • 1991
  • In this paper we examined, by using the PET film with thickness of 16-350$\mu\textrm{m}$, space charge focused on TSC peak at the slightly higher temperature than transition temperture of the glass. In the result we found that charge quantity, leaking current and absorbing current at TSC peak were rarely dependant its thickness at the Al foil contact electrde. In the case of Al evaporated electrode, the absorbing current was rarely dependent its thickness but TSC charge quantity at C-peak was increased directly proportional to its thickness and leaking current was decayed inversely proportional to its thickness. Also current-volteag characteristics showed sublinerar property under ohmic area at the Al evaporated electrode.

Materials and Electrochemistry: Present and Future Battery

  • Paul, Subir
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.115-131
    • /
    • 2016
  • Though battery chemistry and technology had been developed for over a hundred years back, increase in demand for storage energy, in the computer accessories, cell phones, automobile industries for future battery car and uninterrupted power supply, has made, the development of existing and new battery, as an emerging areas of research. With innovation of high energetic inexpensive Nano structure materials, a more energy efficient battery with lower cost can be competitive with the present primary and rechargeable batteries. Materials electrochemistry of electrode materials, their synthesis and testing have been explained in the present paper to find new high efficient battery materials. The paper discusses fundamental of electrochemistry in finding true cell potential, overvoltages, current, specific energy of various combinations of anode-cathode system. It also describes of finding the performance of new electrode materials by various experiments viz. i. Cyclic Voltammetry ii. Chronoamperometry iii. Potentiodynamic Polarization iv. Electrochemical Impedance Spectroscopy (EIS). Research works of different battery materials scientists are discussed for the development of existing battery materials and new nano materials for high energetic electrodes. Problems and prospects of a few promising future batteries are explained.

Characteristics of Surface Morphology and Defects by Polishing Pressure in CMP of BLT Films (BLT 박막의 CMP 공정시 압력에 따른 Surface Morphology 및 Defects 특성)

  • Jung, Pan-Gum;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.101-102
    • /
    • 2006
  • PZT thin films, which are the representative ferroelectric materials in ferroelectric random access memory (FRAM), have some serious problem such as the imprint, retention and fatigue which ferroelectric properties are degraded by repetitive polarization. BL T thin film capacitors were fabricated by plasma etching, however, the plasma etching of BLT thin film was known to be very difficult. In our previous study, the ferroelectric materials such as PZT and BLT were patterned by chemical mechanical polishing (CMP) using damascene process to top electrode/ferroelectric material/bottom electrode. It is also possible to pattern the BLT thin film capacitors by CMP, however, the CMP damage was not considered in the experiments. The properties of BLT thin films were changed by the change of polishing pressure although the removal rate was directly proportional to the polishing pressure in CMP process.

  • PDF

Electrical Properties of Both a Monolayer at the Air/Water Interface and a Langmuir-Blodgett Film Sandwiched Between Aluminum Electrodes (수면상의 고분자막과 알루미늄 전자간의 Langmuir-Blodgett막에 대한 전기적 특성)

  • Mitsumasa Iwamoto;Kang, Dou-Yol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.1
    • /
    • pp.35-42
    • /
    • 1989
  • Electrical properties of both a monolayer at the air/water interface and Langmuir-Blodgett films sandwiched between aluminum electrodes are studied using a current-measuring technique. A change in induced charges on an electrode suspended in the air was measured in combination with the surface area isotherm in the electrical measurement of the monolayer. A change in induced charges on an electrode is measured while heating the sample in the electrical measurement of the LB films. From both measurements, we elucidated that a spontaneous polarization plays very important role in the electrical properties of both a monolayer at the air/water interface and LB films sandwiched between aluminum electrodes.

Effect of Alloying Elements on the Electrochemical Characteristics of an Al Alloy Electrode for Al-air Batteries in 4 M NaOH solution

  • Choi, Yun-Il;Kalubarme, R.S.;Jang, Hee-Jin;Park, Chan-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.839-844
    • /
    • 2011
  • We examined the effects of alloying elements such as Fe, Ga, In, Sn, Mg, and Mn on the electrochemical characteristics of Al-based alloys for Al-air batteries by potentiodynamic polarization tests and electrochemical impedance spectroscopy. The corrosion potential of an Al anode was lowered by the addition of Ga and Sn, resulting in an increase in the cell voltage compared with a pure Al electrode. Fe was not beneficial to improve the electrochemical properties of the Al anode in that it caused a decrease in the cell voltage and reduced corrosion rate slightly. In, Mn, Sn, and Mg decreased the corrosion rate of the Al alloys, while Ga enhanced corrosion significantly and accelerated consumption of the anode.