• 제목/요약/키워드: electrode contact resistance

Search Result 169, Processing Time 0.028 seconds

Analysis of Electric Shock Hazards due to Touch Current According to Soil Resistivity Ratio in Two-layer Earth Model (2층 대지모델에서 대지저항률의 비율에 따른 접촉전류에 의한 감전의 위험성 분석)

  • Lee, Bok-Hee;Kim, Tae-Ki;Cho, Yong-Seung;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.68-74
    • /
    • 2011
  • The touch or step voltages which exist in the vicinity of a grounding electrode are closely related to the earth structure and resistivity and the ground current. The grounding design approach is required to determine the grounding electrode location where the hazardous voltages are minimized. In this paper, in order to propose a method of mitigating the electric shock hazards caused by the ground surface potential rise in the vicinity of a counterpoise, the hazards relevant to touch voltage were evaluated as a function of the soil resistivity ratio $\rho_2/\rho_1$ for several practical values of two-layer earth structures. The touch voltage and current on the ground surface just above the test electrode are calculated with CDEGS program. As a consequence, it was found that burying a grounding electrode in the soil with low resistivity is effective to reduce the electric shock hazards. In the case that the bottom layer soil where a counterpoise is buried has lower resistivity than the upper layer soil, when the upper layer soil resistivity is increased, the surface potential is slightly raised, but the current through the human body is reduced with increasing the upper layer soil resistivity because of the greater contact resistance between the earth surface and the feet. The electric shock hazard in the vicinity of grounding electrodes is closely related to soil structure and resistivity and are reduced with increasing the ration of the upper layer resistivity to the bottom layer resistivity in two-layer soil.

Electrochemical Properties of Indium Tin Oxide Electrodes Immersed in a Cell Culture Medium with Fetal Bovine Serum (Fetal Bovine Serum을 포함한 세포 배양액에 담근 Indium Tin Oxide 전극 계면의 전기화학적 특성)

  • Choi, Won Seok;Cho, Sungbo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • For the biocompatibility test of implantable devices or for the sensitivity evaluation of biomedical sensors, it is required to understand the mechanism of the protein adsorption and the interaction between the adsorbed proteins and cells. In this study, the adsorption of proteins in a cell culture medium with fetal bovine serum onto an indium tin-oxide electrode was characterized by using linear sweep voltammetry and impedance spectroscopy. We immersed the fabricated ITO electrodes in the culture medium for 30, 60, or 90 min, and then measured the electrochemical properties of electrodes with 10 mM $Fe(CN){_6}^{3-/4-}$ and 0.1 M KCl electrolyte. With an increase of contacting time, the anodic peak current was decreased and the charge transfer resistance was increased. However, both parameters were recovered to the values before contact with the medium after the treatment of Trypsin/Ethylenediaminetetraacetic acid hydrolyzing proteins.

Fabrication of Mo Thin Film by Hydrogen Reduction of MoO3 Powder for Back Contact Electrode of CIGS (MoO3 분말의 수소환원을 통한 CIGS계 후면 전극용 Mo 박막제조)

  • Jo, Tae Sun;Kim, Se Hoon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • In order to obtain a suitable back contacting electrode for $Cu(InGa)Se_2$-based photovoltaic devices, a molybdenum thin film was deposited using a chemical vapor transport (CVT) during the hydrogen reduction of $MoO_3$ powder. A $MoO_2$ thin film was successfully deposited on substrates by using the CVT of volatile $MoO_3(OH)_2$ at $550^{\circ}C$ for 60 min in a $H_2$ atmosphere. The Mo thin film was obtained by reduction of $MoO_2$ at $650^{\circ}C$ in a $H_2$ atmosphere. The Mo thin film on the substrate presented a low sheet resistance of approximately $1{\Omega}/sq$.

A Study on the Characteristics of ITO Thin Film for Top Emission OLED (Top Emission OLED를 위한 ITO 박막 특성에 대한 연구)

  • Kim, Dong-Sup;Shin, Sang-Hoon;Cho, Min-Joo;Choi, Dong-Hoon;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.450-450
    • /
    • 2006
  • Organic light-emitting diodes (OLED) as pixels for flat panel displays are being actively pursued because of their relatively simple structure, high brightness, and self-emitting nature [1, 2]. The top-emitting diode structure is preferred because of their geometrical advantage allowing high pixel resolution [3]. To enhance the performance of TOLEDs, it is important to deposit transparent top cathode films, such as transparent conducting oxides (TCOs), which have high transparency as well as low resistance. In this work, we report on investigation of the characteristics of an indium tin oxide (ITO) cathode electrode, which was deposited on organic films by using a radio-frequency magnetron sputtering method, for use in top-emitting organic light emitting diodes (TOLED). The cathode electrode composed of a very thin layer of Mg-Ag and an overlaying ITO film. The Mg-Ag reduces the contact resistivity and plasma damage to the underlying organic layer during the ITO sputtering process. Transfer length method (TLM) patterns were defined by the standard shadow mask for measuring specific contact resistances. The spacing between the TLM pads varied from 30 to $75\;{\mu}m$. The electrical properties of ITO as a function of the deposition and annealing conditions were investigated. The surface roughness as a function of the plasma conditions was determined by Atomic Force Microscopes (AFM).

  • PDF

Work Function Modification of Indium Tin Oxide Thin Films Sputtered on Silicon Substrate

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.351.2-351.2
    • /
    • 2014
  • Indium tin oxide (ITO) has a lot of variations of its properties because it is basically in an amorphous state. Therefore, the differences in composition ratio of ITO can result in alteration of electrical properties. Normally, ITO is considered as transparent conductive oxide (TCO), possessing excellent properties for the optical and electrical devices. Quantitatively, TCO has transparency over 80 percent within the range of 380nm to 780nm, which is visible light although its specific resistance is less than $10-3{\Omega}/cm$. Thus, the solar cell is the best example for which ITO has perfectly matching profile. In addition, when ITO is used as transparent conductive electrode, this material essentially has to have a proper work function with contact materials. For instance, heterojunction with intrinsic thin layer (HIT) solar cell could have both front ITO and backside ITO. Because each side of ITO films has different type of contact materials, p-type amorphous silicon and n-type amorphous silicon, work function of ITO has to be modified to transport carrier with low built-in potential and Schottky barrier, and approximately requires variation from 3 eV to 5 eV. In this study, we examine the change of work function for different sputtering conditions using ultraviolet photoelectron spectroscopy (UPS). Structure of ITO films was investigated by spectroscopic ellipsometry (SE) and scanning electron microscopy (SEM). Optical transmittance of the films was evaluated by using an ultraviolet-visible (UV-Vis) spectrophotometer

  • PDF

Effect of Surface Pyramids Size on Mono Silicon Solar Cell Performance

  • Kim, Hyeon-Ho;Kim, Su-Min;Park, Seong-Eun;Kim, Seong-Tak;Gang, Byeong-Jun;Tak, Seong-Ju;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.100.2-100.2
    • /
    • 2012
  • Surface texturing of crystalline silicon is carried out in alkaline solutions for anisotropic etching that leads to random pyramids of about $10{\mu}m$ in size. Recently textured pyramids size gradually reduced using new solution. In this paper, we investigated that texture pyramids size had an impact on emitter property and front electrode (Ag) contact. To make small (${\sim}3{\mu}m$) and large (${\sim}10{\mu}m$) pyramids size, texturing times control and one side texturing using a silicon nitride film were carried out. Then formation and quality of POCl3-diffused n+ emitter in furnace compare with small and large pyramids by using SEM images, simulation (SILVACO, Athena module) and emitter saturation current density (J0e). After metallization, Ag contact resistance was measured by transfer length method (TLM) pattern. And surface distributions of Ag crystallites were observed by SEM images. Also, performance of cell which is fabricated by screen-printed solar cells is compared by light I-V.

  • PDF

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

Brush-painted Ti-doped In2O3 Transparent Conducting Electrodes Using Nano-particle Solution for Printable Organic Solar Cells

  • Jeong, Jin-A;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.458.2-458.2
    • /
    • 2014
  • We have demonstrated that simple brush-painted Ti-doped $In_2O_3$(TIO) films can be used as a cost effective transparent anodes for organic solar cells (OSCs). We examined the RTA effects on the electrical, optical, and structural properties of the brush painted TIO electrodes. By the direct brushing of TIO nanoparticle ink and rapid thermal annealing (RTA), we can simply obtain TIO electrodes with a low sheet resistance of 28.25 Ohm/square and a high optical transmittance of 85.48% under atmospheric ambient conditions. Furthermore, improvements in the connectivity of the TIO nano-particles in the top region during the RTA process play an important role in reducing the resistivity of the brush-painted TIO anode. In particular, the brush painted TIO films showed a much higher mobility ($33.4cm^2/V-s$) than that of previously reported solution-process transparent oxide films ($1{\sim}5cm^2/V-s$) due to the effects of the Ti dopant with higher Lewis acid strength (3.06) and the reduced contact resistance of TIO nanoparticles. The OSCs fabricated on the brush-painted TIO films exhibited cell-performance with an open circuit voltage (Voc) of 0.61 V, shot circuit current (Jsc) of $7.90mA/cm^2$, fill factor (FF) of 61%, and power conversion efficiency (PCE) of 2.94%. This indicates that brush-painted TIO film is a promising cost-effective transparent electrode for printing-based OSCs with its simple process and high performance.

  • PDF

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode (전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성)

  • Lee, Jun Man;Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1465-1471
    • /
    • 2013
  • The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.