• Title/Summary/Keyword: electrode array

Search Result 224, Processing Time 0.024 seconds

Multiple consecutive-biphasic pulse stimulation improves spatially localized firing of retinal ganglion cells in the degenerate retina

  • Jungryul Ahn;Yongseok Yoo;Yong Sook Goo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.541-553
    • /
    • 2023
  • Retinal prostheses have shown some clinical success in restoring vision in patients with retinitis pigmentosa. However, the post-implantation visual acuity does not exceed that of legal blindness. The reason for the poor visual acuity might be that (1) degenerate retinal ganglion cells (RGCs) are less responsive to electrical stimulation than normal RGCs, and (2) electrically-evoked RGC spikes show a more widespread not focal response. The single-biphasic pulse electrical stimulation, commonly used in artificial vision, has limitations in addressing these issues. In this study, we propose the benefit of multiple consecutive-biphasic pulse stimulation. We used C57BL/6J mice and C3H/HeJ (rd1) mice for the normal retina and retinal degeneration model. An 8 × 8 multi-electrode array was used to record electrically-evoked RGC spikes. We compared RGC responses when increasing the amplitude of a single biphasic pulse versus increasing the number of consecutive biphasic pulses at the same stimulus charge. Increasing the amplitude of a single biphasic pulse induced more RGC spike firing while the spatial resolution of RGC populations decreased. For multiple consecutive-biphasic pulse stimulation, RGC firing increased as the number of pulses increased, and the spatial resolution of RGC populations was well preserved even up to 5 pulses. Multiple consecutive-biphasic pulse stimulation using two or three pulses in degenerate retinas induced as much RGC spike firing as in normal retinas. These findings suggest that the newly proposed multiple consecutive-biphasic pulse stimulation can improve the visual acuity in prosthesis-implanted patients.

Characteristics of Light-evoked Retinal Ganglion Cell Activity with Postnatal Maturation in SD Rat (SD rat 망막신경절세포의 생후 성숙기간에 따른 빛 자극 반응 특성)

  • Ye, Jang-Hee;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.214-219
    • /
    • 2005
  • As part of Korean retinal prosthesis project, we have provided preliminary experimental results regarding voltage parameters for the stimulation of chemically degenerated rabbit retina. Since our APB-treated chemically degenerated retina is only ON-pathway blocked, now we switch our experiments to more appropriate retinal degeneration model, genetically degenerated retina model (RD mouse: rd/rd (C3H/HeJ)). Before studying with RD mouse, we started control experiments with normal SD rat to understand characteristics of retinal ganglion ceil activity with postnatal maturation in rodents. Ganglion cell activities were recorded with 8${\times}$8 multi-electrode array. Moving spontaneous bursts appeared until postnatal day of 15. During pre-eye opening period, no light evoked response appeared. After postnatal day of 2 weeks (post-eye opening period), ON-, OFF- and ON/OFF response appeared. The fractional distributions of ON, OFF, and ON/OFF ganglion cell is about $40\%,\;50\%$, and $5\%$. The percentage ($\%$) of light evoked response in each dorso-temporal, ventral, and dorso-nasal area of eye is about $50\%,\;37.5\%$ and $12.5\%$, respectively. We concluded that the optimal period for experiment in rodent is about postnatal day of 2${\~}$3 weeks.

  • PDF

DC Resistivity method to image the underground structure beneath river or lake bottom (하저 지반특성 규명을 위한 전기비저항 탐사)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Cho Seong-Jun;Lee Seong-Kon;Son Jeongsul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.139-162
    • /
    • 2002
  • Since weak zones or geological lineaments are likely to be eroded, weak zones may develop beneath rivers, and a careful evaluation of ground condition is important to construct structures passing through a river. Dc resistivity surveys, however, have seldomly applied to the investigation of water-covered area, possibly because of difficulties in data aquisition and interpretation. The data aquisition having high quality may be the most important factor, and is more difficult than that in land survey, due to the water layer overlying the underground structure to be imaged. Through the numerical modeling and the analysis of case histories, we studied the method of resistivity survey at the water-covered area, starting from the characteristics of measured data, via data acquisition method, to the interpretation method. We unfolded our discussion according to the installed locations of electrodes, ie., floating them on the water surface, and installing at the water bottom, since the methods of data acquisition and interpretation vary depending on the electrode location. Through this study, we could confirm that the dc resistivity method can provide the fairly reasonable subsurface images. It was also shown that installing electrodes at the water bottom can give the subsurface image with much higher resolution than floating them on the water surface. Since the data acquired at the water-covered area have much lower sensitivity to the underground structure than those at the land, and can be contaminated by the higher noise, such as streaming potential, it would be very important to select the acquisition method and electrode array being able to provide the higher signal-to-noise ratio data as well as the high resolving power. The method installing electrodes at the water bottom is suitable to the detailed survey because of much higher resolving power, whereas the method floating them, especially streamer dc resistivity survey, is to the reconnaissance survey owing of very high speed of field work.

  • PDF

Use of Two Dimensional Electrical Resistivity Tomography to Identify Soil Water Dynamics and the Effective Plant Root Zone

  • Yoon, Sung-Won;Zhang, Yong-Seon;Han, Kyung-Hwa;Jo, Hee-Rae;Ha, Sang-Keun;Park, Sam-Kyeu;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.353-359
    • /
    • 2012
  • The identification of effective root zone would clarify dynamics of plant available water and soil water balance. Using the relationship between soil properties and electrical resistivity (ER) the purpose of this research is to identify soil zone affected by a plant root activity using electrical resistivity tomography (ERT) technique. Four plastic containers were prepared for two different soil textures (clay and sandy loam) and one container for each texture was selected for planting four corn seedlings (Zea mays L.) and the others were prepared for the blank. For ERT monitoring, we prepared 0.8 m plastic sticks with 17 electrodes installed with 5 cm space. The Ministing (AGI Inc., Texas) instrument for electrical resistivity measurement and semi-auto converter of electrode arrangement were set up for dipole-dipole array. During 2 months of the corns growing, ERT monitoring was made 3 to 4 days after the irrigation practice. Despite of the same amount water supplied into soils, two textures showed very different apparent resistivity values due to different clay content. The apparent electrical resistivity is consistently lower in clay loam comparing to sandy loam soil implying that plant root does not significantly alter the overall trend of resistivity. When plant root system, however, is active both soils with plants showed 2-7 times higher electrical resistivity and higher coefficient variation than soils without plant, implying the effect of root system on the resistivity, in which may caused by. This result suggests plant root activities regulating the soil water dynamics mainly control the variation of electrical resistivity over soil textural difference. Therefore the identification of water uptake zone would highly be correlated to plant root activities, thus ERT will be feasible approach to identify spatial characteristics of a plant root activity.

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition (광화학증착법에 의한 직접패턴 비정질 TiOx 박막의 제조 및 저항변화 특성)

  • Hwang, Yun-Kyeong;Lee, Woo-Young;Lee, Se-Jin;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.

Subsurtace Geological Structure of the Downstream Area of the Jangsung Lake (장성호 하류지역의 지하지질구조)

  • 김성균;김용준;오진용;김민선;서구원
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 1997
  • Gravity and electrical resistivity surveys were carried out across the Kwangju fault in the downstream area of the Jangsung Lake, to investigate the location and geometrical feature of the fault. In the resistivity survey, dipole - dipole array method was adopted for 3 survey lines of which length and electrode spacing are 500m and 25m, respectively. Resistivity data are interpreted with aid of computer program "RESIS" which is widely used in resistivity data analysis and two dimensional resistivity profiles are obtained for 3 survey lines. Two large fracture zones relevant to the Kwangju fault are identified in the resistivity profiles. The total of 80 gravity data are observed with the mean spacing of 40 m and the exact leveling is accompanied to obtain more precise gravity anomalies. The subterranean density discontinuities calculated from the inverse method are appeared at the depths of 650rn and 120m. It is considered that the deep discontinuity indicates boundary between Jurassic granites and oveflying Cretaceous tuff formation. while, the shallow discontinuity is interpreted to be a boundary between alluvial deposits and basements. The subsurface geological structure to satisfy the observed Bouguer anomaly is determined from the iterative forward method in which results from existing surface geological informations, the inverse method, and from the resistivity interpretations are employed as an iuitial model. In conclusion, Kwangju fault is appeared to be a high angle normal fault mainly formed in tension stress filed.

  • PDF

A Printing Process for Source/Drain Electrodes of OTFT Array by using Surface Energy Difference of PVP (Poly 4-vinylphenol) Gate Dielectric (PVP(Poly 4-vinylphenol) 게이트 유전체의 표면에너지 차이를 이용한 유기박막트랜지스터 어레이의 소스/드레인 전극 인쇄공정)

  • Choi, Jae-Cheol;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.7-11
    • /
    • 2011
  • In this paper, we proposed a simple and high-yield printing process for source and drain electrodes of organic thin film transistor (OTFT). The surface energy of PVP (poly 4-vinylphenol) gate dielectric was decreased from 56 $mJ/m^2$ to 45 $mJ/m^2$ by adding fluoride of 3000ppm into it. Meanwhile the surface energy of source and drain (S/D) electrodes area on the PVP was increased to 87 $mJ/m^2$ by treating the areas, which was patterned by photolithography, with oxygen plasma, maximizing the surface energy difference from the other areas. A conductive polymer, G-PEDOT:PSS, was deposited on the S/D electrode areas by brushing painting process. With such a simple process we could obtain a high yield of above 90 % in $16{\times}16$ arrays of OTFTs. The performance of OTFTs with the fluoride-added PVP was similar to that of OTFTs with the ordinary PVP without fluoride, generating the mobility of 0.1 $cm^2/V.sec$, which was sufficient enough to drive electrophoretic display (EPD) sheet. The EPD panel employing the OTFT-backpane successfully demonstrated to display some patterns on it.

Posterior Tibial Nerve Somatosensory Evoked Potentials Recorded on Subdural Electrodes around Paracentral Lobule (부중심소엽 주변 경막하 전극들에서 기록된 후경골신경 체성감각유발전위)

  • Seo, Dae Won
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.112-117
    • /
    • 1999
  • Background : Posterior tibial nerve somatosensory evoked potentials (PTSEP) have cortical potentials on primary sensory area of foot around 40 msec. The direct cortical recordings of the cortical potentials shows high voltage positive wave on medial hemisphere, especially on paracentral lobule (PCL). However, it is so difficult to record the potential directly on PCL that the cortical potential of PTSEP is not well understood. We investigated the cortical potential of PTSEP on subdural electrodes. Methods : We recorded cortical potentials to posterior tibial nerve stimulation on subdural electrodes which were on medial hemisphere near PCL in 15 intractable neocortical epilepsy patients. The numbers of subdural electrodes were 8 in 10 subjects ($1{\times}8array$) and 16 in 5 subjects ($2{\times}8arrays$). Seven subjects had three-dimensional imaging fusion (3D-fusion) of MRI and the electrodes using Analyze program. We investigated the amplitude, latency, polarity, and phase of the waves regarding location. Results : The waves had maximal amplitude on PCL in 4 subjects, precuneus in 1, cingulate gyrus nearest to PCL in 2 among 7 subjects with 3D-fusion. Also the electrodes were located on posterior area of PCL (2 out of 2 subjects with more than two electrodes put on PCL in 3D-fusion) and superior area of it (5 out of 5 subjects with $2{\times}8arrays $). All the high (more than 20 uV) amplitude around 40msec had positive polarity in 7 subjects. The phase reversals were detected between the electrodes with the highest amplitude and the just posterior (2 subjects) or anterior (6 subjects) located electrodes. The just posterior located electrodes had sharper phase reversal than the anterior one. Conclusion : PTSEP might have maximal amplitude of cortical potentials on the more superior and posterior area of PCL. The highest amplitude potential has positivity. The wave with maximal amplitude could have phase reversal of cortical potentials with surrounding electrodes, especially shaper with posterior part than with anterior one.

  • PDF

Numerical simulations on electrical resistivity survey to predict mixed ground ahead of a TBM tunnel (TBM 터널 전방 복합지반 예측을 위한 전기 비저항 탐사의 수치해석적 연구)

  • Seunghun Yang;Hangseok Choi;Kibeom Kwon;Chaemin Hwang;Minkyu Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.403-421
    • /
    • 2023
  • As the number of underground structures has increased in recent decades, it has become crucial to predict geological hazards ahead of a tunnel face during tunnel construction. Consequently, this study developed a finite element (FE) numerical model to simulate electrical resistivity surveys in tunnel boring machine (TBM) operations for predicting mixed ground conditions in front of tunnel faces. The accuracy of the developed model was verified by comparing the numerical results not only with an analytical solution but also with experimental results. Using the developed model, a series of parametric studies were carried out to estimate the effect of geological conditions and sensor geometric configurations on electrical resistivity measurements. The results of these studies showed that both the interface slope and the difference in electrical resistivity between two different ground formations affect the patterns and variations in electrical resistivity observed during TBM excavation. Furthermore, it was revealed that selecting appropriate sensor spacing and optimizing the location of the electrode array were essential for enhancing the efficiency and accuracy of predictions related to mixed ground conditions. In conclusion, the developed model can serve as a powerful and reliable tool for predicting mixed ground conditions during TBM tunneling.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF