• Title/Summary/Keyword: electrode area

Search Result 968, Processing Time 0.029 seconds

Voltage Step-down Characteristics of Modified Ring/Dot-type Piezoelectric Transformer using Pb[(Mn1/3Sb2/3)0.05Zr0.475]O3 Ceramics (Pb[(Mn1/3Sb2/3)0.05Zr0.475]O3세라믹스를 이용한 변형 Ring/Dot형 압전세라믹 변압기의 감압특성)

  • 남성진;남효덕;손준호;이준형
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.171-177
    • /
    • 2004
  • Voltage step-down characteristics in Ring/Dot type piezoelectric transformer were examined as a function of the area of input electrode when the area of output electrode is fixed. The effects of driving frequency and load resistance on the voltage step-down characteristics were also examined. Voltage gain was greatly dependent on the driving frequency and load resistance, and showed a maximum gain at resonance frequency of the step-down transformer. The frequency where the maximum cutout voltage appears increased about 0.2% as the load resistance increased from 10 to 150 Ω. As the area of input electrode increased, the voltage gain and the efficiency of the transformer increased. Frequency dependence of efficiency of the step-down transformer revealed a similar tendency with the voltage gain curves. The maximum efficiency remarked 94% when the input voltage and the load resistance were 20 Vpp and 120 Ω, respectively.

Highly Sensitive and Selective Glucose Sensor Realized by Conducting Polymer Modified Nanoporous PtZn Alloy Electrode

  • Jo, Hyejin;Piao, Hushan;Son, Yongkeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Platinum is a well known element which shows a significant electrocatalytic activity in many important applications. In glucose sensor, because of the poisoning effect of reaction intermediates and the low surface area, the electrocatalytic activity towards the glucose oxidation is low which cause the low sensitivity. So, we fabricate a nanoporous PtZn alloy electrode by deposition-dissolution method. It provides a high active surface and a large enzyme encapsulating space per unit area when it used for an enzymatic glucose sensor. Glucose oxidase was immobilized on the electrode surface by capping with PEDOT composite and PPDA. The composite and PPDA also can exclude the interference ion such as ascorbic acid and uric acid to improve the selectivity. The surface area was determined by cyclic voltametry method and the surface structure and the element were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX), respectively. The sensitivity is $13.5{\mu}A/mM\;cm^2$. It is a remarkable value with such simply prepared senor has high selectivity.

Fabrication of Thick Film Capacitors with Printing Technology (인쇄기법을 이용한 후막 캐패시터 제작)

  • Lee, Hye-Mi;Shin, Kwon-Yong;Kang, Hyung-Tae;Kang, Heui-Seok;Hwang, Jun-Young;Park, Moon-Soo;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.100-101
    • /
    • 2007
  • Polymer thick film capacitors were successfully fabricated by using ink-jet printing and screen printing technology. First, a bottom electrode was patterned by ink-jet printing of a nano-sized silver ink. Next, a dielectric layer was formed by the screen printing, then a top electrode was pattern by ink-jet printing of a nano-sized silver ink. The printed area of the dielectric layers were changed into $2{\times}2m^2$and $4{\times}2m^2$, and also the area of the electrodes were patterned with $1{\times}1mm^2$ and $1{\times}3mm^2$. The thickness of the printed dielectric layer was ranged from 1.1 to $1.4{\mu}m$. The analysis of capacitances verified that the capacitances was proportional to the area of the printed electrode. The capacitances of the fabricated capacitors resulted in one third of the calculated capacitances.

  • PDF

A Study of The Surface Dielectric Barrier Discharge Design Conditions for Generating Negative Air Ions (음이온 생성을 위한 표면 유전체장벽방전의 설계조건 연구)

  • Shin, Sang-Moon;Kim, Jung-Yoon;Kim, Jong-Soo;Choi, Jae-Ha;Choi, Won-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.114-122
    • /
    • 2014
  • This paper describes a study of the design conditions of a planar surface dielectric barrier discharge (DBD) reactors for generating negative air ions. The capacity of negative air ion generated by the surface DBD reactor is affected by the shape, area ratio and the location of the discharge and induction electrodes of it. To study the optimal design conditions of DBD reactors, the electrodes printed on the substrate of a PCB board is utilized to conduct kind of experiments: the distance of the each electrode along with the X-Y axis, the area ratio of the discharge electrode to induction electrode, and the symmetrical and asymmetrical location of two electrodes. The ion generation capacity is inverse proportional to the gap increases along with X-Y axis. And the optimum ion concentration generated by the ionizer was inspected when the electrodes area ratio was 3 and 5 times of the symmetrical and asymmetrical experimental condition respectively.

Fabrication and Characteristics of Ring-Dot type Piezoelectric Transformer (Ring-dot형 감압형 압전변환기의 제작과 특성)

  • Nam, Sung-Jin;Lee, Yeung-Min;Nam, Hyo-Duk;Sohn, Joon-Ho;Lee, Joon-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.722-725
    • /
    • 2004
  • Voltage step-down characteristics in Ring/Dot type piezoelectric transformer were examined as a function of the area of input electrode when the area of output electrode is fixed. The effects of driving frequency and load resistance on the voltage step-down characteristics were also examined. Voltage gain was greatly dependent on the driving frequency and load resistance, and showed a maximum gain at resonance frequency of the step-down transformer. The frequency where the maximum output voltage appears increased about 0.2% as the load resistance increased from 10 to $150\Omega$. As the area of input electrode increased, the voltage gain and the efficiency of the transformer increased. Frequency dependence of efficiency of the step-down transformer revealed a similar tendency with the voltage gain curves. The maximum efficiency remarked 94% when the input voltage and the load resistance were 20 $V_{PP}$ and $120\Omega$, respectively.

  • PDF

Predicted Optimum Efficiency due to Changes in the Design Parameters of the Small Electrostatic Precipitator (설계인자 변화에 따른 소형 전기집진장치의 최적효율 예측)

  • Suh, Jeong-Min;Yi, Pyong-In;Jung, Moon-Sub;Park, Jeong-Ho;Lim, Woo-Taik;Park, Chool-Jae;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1187-1197
    • /
    • 2013
  • The result of a small electrostatic precipitator which is in order to decrease indoor air pollution for optimal efficiency was shown as follows. Although the closer distance between the discharge electrode and dust collecting electrode shows the better throughput efficiency by forming strong electrostatic Field, it does not have profound impact in case of optimal dust collecting area. G.P(gas passage) which is the distance from dust collecting electrode to dust collecting electrode is a crucial factor to decide dust collecting efficiency. The narrower distance of G.P shows the better throughput efficiency whereas it decreases when the distance is too narrow since sparks ensue by increasing the capacity of electrostatic charging system 5 mm regards as optimal efficiency in this experiment. Although the higher voltage shows the higher dust collecting efficiency overall, the experiment was not able to keep performing since the sparks which decrease dust collecting efficiency ensue over 40 kV. The efficient and safe voltage state is considered 3.6 kV in this experiment. The most crucial factor for dust collecting efficiency of an electrostatic precipitator which is in order to decrease indoor air pollution is applied voltage. In addition, optimal raw gas flow rate(2.4 m/sec) is more important factor than the excessive increase of dust collecting area.

Effect of an emitting-layer height on a photon extraction efficiency in LED (LED에서 발광층의 높이가 광추출 효율에 미치는 영향)

  • Kwon, Keeyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.564-569
    • /
    • 2021
  • In this paper, for the typical LED and the tilted LED, when there is no electrode, when 20% absorption (80% reflection) occurs at the electrode, and when 60% absorption (40% reflection) occurs at the electrode, the effect of the absorption at the electrode and the height of the active region on the photon extraction efficiency and the mean photon path length was investigated, and an appropriate height of the active region was proposed. In a typical LED, as the absorption of the electrode increases, the photon extraction efficiency decreases from 18% to 15% and 13%, and the photon extraction efficiency is highest when the height of the active area is located in the center between the two electrodes. In the tilted LED, as the absorption of the electrode increases, the photon extraction efficiency decreases from 38% to 33% and 25%, and the photon extraction efficiency is highest when the height of the active area is located in the center between the two electrodes. The tilted LED can increase the photon extraction efficiency more than twice than that of a typical LED, where photons are trapped inside the chip due to total reflection.

In-Situ Analysis of Overpotentials in Direct Methanol Fuel Cell by Using Membrane Electrode Assembly Composed of Three Electrodes (삼전극으로 구성된 막전극접합체를 이용한 직접메탄올 연료전지의 실시간 과전압 분석)

  • Jung, Namgee;Cho, Yoon-Hwan;Cho, Yong-Hun;Sung, Yung-Eun
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.330-336
    • /
    • 2018
  • In this study, a membrane electrode assembly(MEA) composed of three electrodes(anode, cathode, and reference electrode) is designed to investigate the effects of methanol concentration on the overpotentials of anode and cathode in direct methanol fuel cells(DMFCs). Using the three-electrode cell, in-situ analyses of the overpotentials are carried out during direct methanol fuel cell operation. It is demonstrated that the three-electrode cell can work effectively in transient state operating condition as well as in steady-state condition, and the anode and cathode exhibit different overpotential curves depending on the concentration of methanol used as fuel. Therefore, from the real-time separation of the anode and cathode overpotentials, it is possible to more clearly prove the methanol crossover effect, and it is expected that in-situ analysis using the three-electrode cell will provide an opportunity to obtain more diverse results in the area of fuel cell research.

Characteristics of Nano-crystalline TiO2 Dye-sensitized Solar Cells having Counter Electrodes with Different Preparing Process

  • Lee, Dong-Yoon;Koo, Bo-Kun;Kim, Hyun-Ju;Lee, Won-Jae;Song, Jae-Sung;Kim, Hee-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.238-242
    • /
    • 2005
  • The Pt counter electrode of a dye-sensitized solar cell (DSSC) plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, Pt electrodes were prepared by a electro-deposition and a RF magnetron sputtering. Electrochemical behavior of Pt electrodes was compared using cyclic-voltammetry and impedance spectroscopy. Surface morphology of Pt electrodes was investigated by FE-SEM and AFM. I-V characteristics of DSSC were measured and discussed in association with the surface properties of counter electrode. As a result, electrochemical properties of electro-deposited Pt electrode were superior to that of sputtered Pt electrode. This is likely that enlarged area of surface in electro-deposited Pt electrode in comparison with the case of sputtered Pt electrode playa role in enhancing such electrochemical properties.

The Effect of Electrode Spacing and Size on the Performance of Soil Microbial Fuel Cells (SMFC) (전극간 거리와 크기가 토양미생물연료전지의 성능에 미치는 영향)

  • Im, Seong-Won;Lee, Hye-Jeong;Chung, Jae-Woo;Ahn, Yong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.758-763
    • /
    • 2014
  • Soil microbial fuel cells (SMFC) have gained a great attention as an eco-friendly technology that can simultaneously generate electricity and treat organic pollutants from the contaminated soil. We evaluated the effect of electrode spacing and size on the performance of SMFC treating soil contaminated with organic pollutants. Maximum power density decreased with increase in electrode distance or decrease in electrode size, likely due to higher internal resistance. The maximum voltage and power density decreased from 326 mV and $19.5mW/m^2$ with 4 cm of electrode distance to 222 mV and $5.9mW/m^2$ with 9 cm of electrode distance. In case of electrode size test, the maximum voltage and power density generated was 291 mV, $0.34mW/m^3$ when both of anode and cathode area were $64cm^2$ with 4 cm of electrode distance. The maximum voltage decreased by 19~29% when the anode area decreased to $16cm^2$ while only 3~12% of voltage decreased with cathode area decrease. The maximum power density decreased by 49~68% with decreasing anode size, and by 29~47% with decreasing cathode size. These results showed that the anode area had more significant effects than the cathode area on the power generation of SMFC which has a high internal resistance due to a coexistence of soil and wastewater in the reactor.