• Title/Summary/Keyword: electroconductive textiles

Search Result 5, Processing Time 0.017 seconds

Fabrication of PEDOT:PSS/AgNW-based Electrically Conductive Smart Textiles Using the Screen Printing Method and its Application to Signal Transmission Lines (스크린 프린팅을 이용한 PEDOT:PSS/AgNW 기반 전기전도성 스마트 텍스타일의 제조 및 신호전달선으로의 적용)

  • Kang, Heeeun;Lee, Eugene;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.4
    • /
    • pp.527-535
    • /
    • 2021
  • In this study, electroconductive textiles were developed by screen-printing technology using a complex solution of PEDOT:PSS/AgNW on a polylactic acid nanofiber web. A performance evaluation was then conducted to utilize this electroconductive textile as a signal transmission line. To obtain highly conductive electroconductive textiles, this study sought to determine the optimal mixing ratio of PEDOT:PSS/AgNW. Sheet resistance was measured to evaluate the electrical properties of electroconductive textiles, Finite element-scanning electron microscopy images were then used to examine surface properties, and Fourier transform-infrared analysis was performed to evaluate chemical properties. The signal waveform characteristics of the electroconductive textile were observed using a signal generator and an oscilloscope. Radio-frequency characteristics were then evaluated to confirm frequency range, and bending tests were conducted to evaluate durability. The signal transmission lines produced in this study had a sheet resistance value of 3.30 ?/sq, and signal transmission performance was evaluated to observe that the input value of the voltage was nearly identical to the output value. In addition, S21 analysis confirmed that it was available in the frequency domain up to 35 MHz. The performances of the transmission lines were maintained after 100, 200, 500, and 1,000 repeated bending tests, and sufficient durability was confirmed.

Development of PU Nanoweb Based Electroconductive Textiles and Exploration of Applicability as a Transmission Line for Smart Clothing (PU 나노웹 기반 전기전도성 텍스타일의 개발 및 스마트의류용 신호전달선으로의 적용 가능성 탐색)

  • Jang, Eunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.20 no.1
    • /
    • pp.101-107
    • /
    • 2018
  • The purpose of this study is to develop the electroconductive textiles based on polyurethane(PU) nanoweb and to explore that it is applicable to smart clothing. The electroconductive textiles developed by coating 2.0 wt% aqueous dispersed non-oxidized graphene paste on the surface of PU nanoweb. The fabricated electroconductive nanoweb was applied as a transmission line to connect the LED lamp, and the brightness of the LED lamp was measured to confirm its performance. The nanoweb transmission line was fixed by two methods(seam sealing tape, embroidering) to connect the LED lamp and AA batteries. The results as follows, the brightness of the LED lamp fixed with seam sealing tape was about 82 lux, and which fixed with embroidering was about 57 lux. It represents that the nanoweb transmission line which fixed with the seam sealing tape has better electrical signal transmitting because the lux value higher than the one fixed by embroidering. In order to compare the performance of the nanoweb transmission line and the metal wire, we connected the LED lamp with copper wire. The brightness of copper wire connected LED lamp was about 193 lux. Although the electrical signal strength of the nanoweb transmission line was weaker than the copper wire, it was reachable to operate LED lamp. The results of this study will provide a basic data to develop the textile based electronic devices, and conducting wire for smart clothing.

Fabrication of Electroconductive Textiles Based PLA Nanofiber Web Coated with PEDOT:PSS (PEDOT:PSS로 코팅된 PLA 나노섬유 웹의 전기전도성 텍스타일 제조)

  • Shin, Sungeun;Cha, Sujin;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.233-239
    • /
    • 2020
  • We proposed a simple process of fabricating electroconductive textiles by coating conductive polymer PEDOT:PSS (Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) on biocompatible PLA (Poly Lactic Acid) nanofiber web for application to smart healthcare. Electroconductive textiles were obtained by a drop-coating process using different amounts of PEDOT:PSS solutions., DMSO (dimethyl sulfoxide) was then used as an additive in the post-treatment process to improve conductivity. The surface morphology of the specimens was observed by FE-SEM. The chemical structures of the specimens were characterized using FTIR. The electrical properties (linear and sheet resistance) of the specimens were measured. The effect of the bending angles on the electrical properties was also investigated to confirm their applicability as wearable smart textiles. FE-SEM and FTIR analysis confirmed that the deposition of PEDOT:PSS on the PLA nanofiber web surface was successful. The conductivity of the PEDOT:PSS/PLA nanofiber web was enhanced up to 1.5 ml with an increasing amount of PEDOT:PSS solutions, but there was no significant difference at 2.0 ml. The optimum condition of PEDOT:PSS deposition was established to 1.5 ml. Even when the specimen coated with 1.5 ml was bent every 30°, the change in the electrical resistance values was still low within 3.7 Ω. It confirmed that stable electrical performance was maintained and proved the applicability as a flexible textile sensor.

Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode (심전도용 전극으로의 적용을 위한 폴리피롤 코팅 PVA 나노웹 전기전도성 텍스타일의 제조)

  • Kim, Jae-Hyun;Yang, Hyuk-Joo;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.363-369
    • /
    • 2019
  • This study developed electroconductive textiles by coating polypyrrole to PET nonwoven-based Polyvinyl Alcohol (PVA) nanoweb made by electrospinning and applying the developed electrotextiles as ECG Electrodes. To find the optimum coating conditions for high electrical conductivity, the ratios of 2.6-Naphthalenedisulfonic acid with Disodium Salt (NDS) vs Ammonium Persulfate (APS) as an oxidant and a doping agent in the solution were changed from 3:7 to 7:3; the immersion time of the specimen in the solution was 1 hour. PVA nanowebs coated with polypyrrole under various conditions were filmed with FE-SEM. FT-IR analysis was also performed to examine the presence of polypyrrole nanoparticles in the PVA nanoweb. The electrical resistance of the treated specimens were measured with a Multimeter. Consequently, the PVA Nano Web was undamaged even after heat treatment that allowed for coating. Uniform polypyrrole nanoparticles then formed on the surface of the PVA nanoweb after coating. The measured electrical resistance was shown to be at least $12K{\Omega}/{\Box }$ from a maximum of $3,456K{\Omega}/{\Box }$. The proper amount of NDS content had a positive effect on the conductivity improvement of electroconductive textiles; in addition, the highest electrical conductivity was achieved with a ratio of 3:7 between NDS and APS.

Fabrication of Electroconductive Textiles Based Polyamide/Polyurethan Knitted Fabric Coated with PEDOT:PSS/Non-oxidized Graphene (PEDOT:PSS/그래핀 코팅된 폴리아미드/폴리우레탄 혼방 편직물 기반의 전기전도성 텍스타일 제조)

  • Luo, Yuzi;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.146-155
    • /
    • 2022
  • We proposed a simple process of creating electroconductive textiles by using PEDOT:PSS(Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))/non-oxidized graphene to coat polyamide or polyurethane knitted fabric for smart healthcare purposes. Electroconductive textiles were obtained through a coating process that used different amounts of PEDOT:PSS/non-oxidized graphene solutions on polyamide/polyurethane knitted fabric. Subsequently, the surface, electrical, chemical, weight change, and elongation properties were evaluated according to the ratio of PEDOT:PSS/non-oxidized graphene composite(1.3 wt%:1.0 wt%; 1.3 wt%:0.6 wt%; 1.3 wt%:0.3 wt%) and the number of applications(once, twice, or thrice). The specimens' surface morphology was observed by FE-SEM. Further, their chemical structures were characterized using FTIR and Raman spectroscopy. The electrical properties measurement (sheet resistance) of the specimens, which was conducted by four-point contacts, shows the increase in conductivity with non-oxidized graphene and the number of applications in the composite system. Moreover, a test of the fabrics' mechanical properties shows that PEDOT:PSS/non-oxidized graphene-treated fabrics exhibited less elongation and better ability to recover their original length than untreated samples. Furthermore, the PEDOT:PSS/non-oxidized graphene polyamide/polyurethane knitted fabric was tested by performing tensile operations 1,000 times with a tensile strength of 20%; Consequently, sensors maintained a constant resistance without noticeable damage. This indicates that PEDOT:PSS/non-oxidized graphene strain sensors have sufficient durability and conductivity to be used as smart wearable devices.