• Title/Summary/Keyword: electrochromic devices

Search Result 55, Processing Time 0.029 seconds

Study of electrochromic cells in $WO_{3}$/$MoO_{3}$ double-layer structure ($WO_{3}$$ MoO_{3}$ 이중층을 가진 전기변색 소자에 관한 연구)

  • 임석범;임동규;백희원;김영호;조봉희;유인종;변문기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.515-518
    • /
    • 2000
  • The electrochromic properties of $WO_{3}$/$MoO_{3}$ and $MoO_{3}$/$WO_{3}$ double-layers have been systemically studied. The double-layers were made by a e-beam evaporation method and investigated by studying optical modulation, transmittance, and cyclic voltammetry. The devices exhibit good optical properties with wavelength range of 400 to 1100 nm(visible and infrared) during coloration as a function of lithium ion charge injection. It has shown that the double-layer electrochromic thin films are improved the electrochromic properties, but the electrochemical properties are less stable.

  • PDF

Electrochromism of Reactive Magnetron Sputtered Tungsten Oxide Thin Films (반응성 마그네트론 스퍼터링법에 의해 증착된 $WO_3$ 박막의 일렉트로크로믹 특성)

  • Lee, Kee-Oh;Choi, Young-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1346-1348
    • /
    • 1998
  • Tungsten oxide($WO_3$) thin films were prepared by reactive magnetron sputtering in an $Ar/O_2$ atmosphere from a compressed powder $WO_3$ target and their electrochromic(EC) phenomena were investigated. PEO-$LiClO_4$-PC polymer electrolyte can easely be formed into thin films and showed high transmittance. Such electrolyte have electrochromic properties suitable for large-scale electrochromic devices. For the devices using $WO_3$ thin films of 1500, 2500, $4000{\AA}$ thickness with glass/ITO/$WO_3$/PEO-$LiClO_4$-PC/ITO/glass structure, an optical modulation of $50{\sim}60%$ were obtained at a potential range of $1{\sim}2V$. It has shown that transmittance and reflectance of light could be electrically controlled by low applied voltage.

  • PDF

Fabrication of Electrochromic Devices Using Double Layer Conducting Polymers for Infrared Transmittance Control

  • Kim, Jin Kyu;Koh, Jong Kwan;Kim, Bumsoo;Jeon, Seokwoo;Ahn, Joonmo;Kim, Jong Hak
    • Rapid Communication in Photoscience
    • /
    • v.3 no.2
    • /
    • pp.32-34
    • /
    • 2014
  • We report the performance improvement of electrochromic devices for modulating the transmittance contrast of long wavelength infrared light between 1.5 and 5.0 ${\mu}m$ based on a double layer of conducting polymers. The device, fabricated with poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene) (PEDOT) as the first and second layers, respectively, showed an transmittance contrast of 60% with a response rate under 5 s, which is greater than the transmittance contrast of cells based on only P3HT or PEDOT (approximately 40%).

Effects of Pre-reducing Sb-Doped SnO2 Electrodes in Viologen-Anchored TiO2 Nanostructure-Based Electrochromic Devices

  • Cho, Seong Mok;Ah, Chil Seong;Kim, Tae-Youb;Song, Juhee;Ryu, Hojun;Cheon, Sang Hoon;Kim, Joo Yeon;Kim, Yong Hae;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.469-478
    • /
    • 2016
  • In this paper, we investigate the effects of pre-reducing Sb-doped $SnO_2$ (ATO) electrodes in viologen-anchored $TiO_2$ (VTO) nanostructure-based electrochromic devices. We find that by pre-reducing an ATO electrode, the operating voltage of a VTO nanostructure-based electrochromic device can be lowered; consequently, such a device can be operated more stably with less hysteresis. Further, we find that a pre-reduction of the ATO electrode does not affect the coloration efficiency of such a device. The aforementioned effects of a pre-reduction are attributed to the fact that a pre-reduced ATO electrode is more compatible with a VTO nanostructure-based electrochromic device than a non-pre-reduced ATO electrode, because of the initial oxidized state of the other electrode of the device, that is, a VTO nanostructure-based electrode. The oxidation state of a pre-reduced ATO electrode plays a very important role in the operation of a VTO nanostructure-based electrochromic device because it strongly influences charge movement during electrochromic switching.

Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application (신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용)

  • Lee, Jin-Young;Han, Song-Yi;Nah, Yoon-Chae;Park, Jongwoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.

Viologen Based All-in-one Flexible Electrochromic Devices (바이올로진 기반의 일체형 유연 전기변색소자)

  • Park, Bo-Seong;Kim, Hyun-Jeong;Shin, Hyeonho;Park, Seongmin;Lee, Jaeun;Jeon, Sunggun;Nah, Yoon-Chae
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.132-138
    • /
    • 2021
  • Electrochromic devices (ECDs) have been drawing great attention due to their high color contrast, low power consumption, and memory effect, and can be used in smart windows, automatic dimming mirrors, and information display devices. As with other electronic devices such as LEDs (light emitting diodes), solar cells, and transistors, the mechanical flexibility of ECDs is one of the most important issue for their potential applications. In this paper, we report on flexible ECDs (f-ECDs) fabricated using an all-in-one EC gel, which is a mixture of electrolyte and EC material. The f-ECDs are compared with rigid ECDs (r-ECDs) on ITO glass substrate in terms of color contrast, coloration efficiency, and switching speed. It is confirmed that the f-ECDs embedding all-in-one gel show strong blue absorption and have competitive EC performance. Repetitive bending tests show a degradation of electrochromic performance, which must be improved using an optimized device fabrication process.

Ink-jet Printing for the Fabrication of a Flexible Electrochromic Device Based on the Water-Soluble Viologen-Functionalized Dendrimer

  • Yekefallah, Vahideh;Soleimani-Gorgani, Atasheh;Rouhani, Shohre;Najafi, Farhood
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.146-158
    • /
    • 2021
  • This paper reports the preparation of an ink-jet printed flexible electrochromic device based on a water-soluble viologen-functionalized dendrimer. Polyamidoamine (PAMAM) dendrimers were modified with different concentrations of 1-1 bis(propylamine)-4,4'-bipyridylium dibromides to obtain solution-processable electrochromic materials (K1/2 and K1). FTIR, NMR, and elemental analyses are used to characterize synthesized viologens. Moreover, their electrochemical properties were investigated using cyclic voltammetry in an electrolyte solution consisting of 0.1 M HCl to find the optimum viologens. The low-cost ink-jet printer was used to print the prepared water-soluble electrochromic inks onto the ITO coated PET substrate to form desired transparent patterns. The electrolyte was applied on the printed electrochromic ink to make a sandwich with another ITO coated PET to prepare the electrochromic devices (ECD). By applying an electrical potential (0 to -2 V), the transparent ECD's color changed from colorless to blue. The color changes for the optimum ECD (K1), which had more viologen units on the dendrimer, was accompanied by an optical contrast of 47% and 311.5 ㎠C-1 coloration efficiency at 600 nm.

Developement of Electrochromic Mirror for Automobiles (자동차용 Electrochromic Mirror의 개발)

  • 서동규;김영호;조봉희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.336-339
    • /
    • 1995
  • There has been considerable interest in electrochromic devices because of its potential application in automobiles including mirrors and windows. The electrochromic(EC) mirror can automatically control the amount of glare produced by headlights or other light source on either inside or outside mirrors. Therefore, the EC mirror can be a better alternative to todays day-night mirrors for automobiles. In this paper we have fabricated all solid state EC mirrors with glass-ITO / a-WO$_3$/ polymer electrolyte / a-V$_2$O$\sub$5/ / ITO-glass / Al structure and investigated their spectral reflectance as a function of applied voltage.

  • PDF

Characteristics of an electrochromic ECD (electro-chromic device) film in applications for smart windows with a 4-layer structure, a thickness of 0.5 mm (0.5 mm 이내의 두께를 갖는 4층 구조의 스마트 윈도우에 적용되는 전기변색 ECD(electro-chromic device) 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • Using electrochromic devices (ECD), smart window films that can change the colors from tinted state into transparent state by applying an external voltage were manufactured. Polyethylene terephthalate (PET) film was used as a substrate instead of conventional glass, and ECD modules having a total thickness of about 50 ㎛ were manufactured by sequentially introducing an ITO/Ag/ITO electrode layer, a WO3/TIC2 organic discoloration layer, and a Nafion fluorine electrolyte layer. Through a series of sputtering, bar coating, and thermal compression processes, a large scale smart window with a horizontal and vertical length of more than 80 mm was manufactured. When DC 3.5 V was applied, the transmittance decreased from 54 % to 24 % and moreover the color change could be confirmed even with the naked eye. Reversible color change capability at low external voltage implies that external sunlight can be selectively blocked which is effective in terms of energy saving.

Enhanced Electrochromic Performance by Uniform Surface Morphology of Tungsten Oxide Films (텅스텐산화물 막의 균일한 표면 형상에 의한 향상된 전기변색 성능)

  • Kim, Kue-Ho;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.411-416
    • /
    • 2018
  • Tungsten oxide($WO_3$) films with uniform surface morphology are fabricated using a spin-coating method for applications of electrochromic(EC) devices. To improve the EC performances of the $WO_3$ films, we control the heating rate of the annealing process to 10, 5, and $1^{\circ}C/min$. Compared to the other samples, the $WO_3$ films fabricated at a heating rate of $5^{\circ}C/min$ shows superior EC performances for transmittance modulation(49.5 %), response speeds(8.3 s in a colored state and 11.2 s in a bleached state), and coloration efficiency($37.3cm^2/C$). This performance improvement is mainly related to formation of a uniform surface morphology with increased particle size without any cracks by an optimized annealing heating rate, which improves the electrical conductivity and electrochemical activity of the $WO_3$ films. Thus, the $WO_3$ films with a uniform surface morphology prepared by the optimized annealing heating rate can be used as a potential candidate for performance improvement of the EC devices.