• Title/Summary/Keyword: electrochemical reduction

Search Result 799, Processing Time 0.034 seconds

Effects of Chloride and Sulfate Ions on Corrosion Behaviors of Structural Materials Based on Design of Experiment (실험계획에 기반한 수돗물 성분(Chloride and Sulfate Ions)의 구조재료 부식 영향성 고찰)

  • Dong-In Lim;Heng-Su Noh;Hyeok-Jun Kwon;Sung-Ryul Park;Man-Sik Jo;Doo-Youl Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • Corrosion management of an aircraft and its engine relies on rinsing and cleaning using tap water. Few studies have reported effects of tap water species on corrosion behaviors of structural materials. In this study, a series of experiments were conducted based on the design of experiment. Solutions with different levels of chloride and sulfate ions were prepared using a full factorial design. Two structural materials (aluminum alloy and steel) were used for an alternate immersion test. Weight loss was then measured. In addition, a silver specimen was utilized as a sensor for chloride deposition measurement. The silver specimen was examined using the electrochemical reduction method, XPS, and SEM-EDS. Surface analysis revealed that levels of chloride and sulfate ions were sufficient for the formation of silver chloride and silver surface. Statistical analysis of weight loss and chloride deposition rate showed significant differences in measured values. Concentration of chloride ions greatly affected corrosion behaviors of structural materials. Sulfate ion hindered the adsorption reaction. These results emphasize the importance of controlling ion concentration of tap water used for cleaning and rinsing an aircraft.

Electrochemical properties of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$ cathodes for medium-temperature SOFC (중간온도형 고체산화물 연료전지의 양극재료로서 $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$의 전기화학특성)

  • Ryu Ji-H.;Jang Jong-H.;Lee Hee-Y.;Oh Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • For the purpose of finding new cathode materials for medium-temperature $(700\~800^{\circ}C)$ solid oxide fuel cells, $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$ are prepared, and their thermal stability and conductivity characteristics are investigated. Also, the cathodic activities are measured after the cathode layer being attached on CGO (cerium-gadolinium oxide) electrolyte disk. The X-ray analyses indicate that the materials prepared by calcining the citrate-gels at $800^{\circ}C$ have the orthorhombic perovskite structure without discernible impurities. The thermal stability of the undoped Co perovskite is so poor that it is decomposed to the individual binary oxide even at $1300^{\circ}C$. But the partially Fe-doped cobaltates exhibit a better thermal stability to retain their structural integrity up to $1400^{\circ}C$. The observation whereby both the undoped and Fe-doped cobaltates melt at ca. $1300^{\circ}C$ leads us to perform the electrode adhesion at <$1300^{\circ}C$. The cathodic activity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$, electrodes is superior to $La_{0.9}Sr_{0.1}MnO_3$, among the samples of $x=0.0\~0.5$, the x=0.2 cathode shows the best activity for the oxygen reduction reaction. It is likely that the Fe-doping provides a better thermal stability to the materials but in turn imparts an inferior cathodic activity, such that the optimum trade-off is made at x=0.2 between the two factors. The total electrical conductivity and ion conductivity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$, are measured to be 51 S/cm and $6.0\times10^{-4}S/cm\;at\;800^{\circ}C$, respectively. The conductivity values illustrate that the materials are a mixed conductor and the reaction sites can be expanded to the overall electrode surface, thereby providing a better cathodic activity than $La_{0.9}Sr_{0.1}MnO_3$.

A Study on Catalytic Activity of Oxygen Reduction Reaction and Performance of PEMFC using Pt/C Synthesized by Modified Polyol (수정된 폴리올법으로 합성된 Pt/C를 이용한 산소환원반응성 및 고분자전해질 연료전지 성능 연구)

  • Yang, Jongwon;Chu, Cheonho;Kwon, Yongchai
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.157-162
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of carbon supported Pt (Pt/C) that is synthesized by polyol method. With the Polyol_Pt/C that is adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with commercial Pt/C(Johnson Mattey) catalyst. Their electrochemically active surface (EAS) area are measured by cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and (ii) PEMFC single cell tests are used. The CV measurement demonstrate EAS of Polyol_Pt/C is compared with commercial JM_Pt/C. In case of Polyol_Pt/C, its half-wave potential, kinetic current density are excellent. Based on data obtained by half-cell test, when PEMFC single cell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing Polyol_Pt/C are better than those employing commercial Pt/C. Conclusively, Polyol_Pt/C synthesized by modified polyol process shows better ORR catalytic activity and PEMFC performance than other catalysts.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Study on Oxidation or Reduction Behavior of Cs-Te-O System with Gas Conditions of Voloxidation Process (휘발산화 공정 조건에 따른 Cs-Te-O 시스템의 산화 환원 거동 연구)

  • Park, Byung Heung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.700-708
    • /
    • 2013
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. Pyroprocessing has been developed with the dry technologies which are performed under high temperature conditions excluding any aqueous processes. Pyro-processes which are based on the electrochemical principles require pretreatment processes and a voloxidation process is considered as a pretreatment step for an electrolytic reduction process. Various kinds of gas conditions are applicable to the voloxidation process and the understanding of Cs behavior during the process is of importance for the analyses of waste characteristics and heat load on the overall pyroprocessing. In this study, the changes of chemical compounds with the gas conditions were calculated by analyzing gas-solid reaction behavior based on the chemical equilibria on a Cs-Te-O system. $Cs_2TeO_3$ and $Cs_2TeO_4$ were selected after a Tpp diagram analysis and it was confirmed that they are relatively stable under oxidizing atmospheres while it was shown that Cs and Te would be removed by volatilization under reducing atmosphere at a high temperature. This work provided basic data for predicting Cs behavior during the voloxidation process at which compounds are chemically distributed as the first stage in the pyroprocessing and it is expected that the results would be used for setting up material balances and related purposes.

Effects of Ethanol and Phenobarbital on Hemoglobin Adducts Formation in Rats Exposed to Direct Black 38 (Direct Black 38 염료를 흰쥐에 투여 시 형성되는 헤모글로빈 부가체에 에탄올과 Phenobarbital이 미치는 영향)

  • Kim, Chi-Nyon;Lee, Se-Hoon;Roh, Jae-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.3
    • /
    • pp.229-235
    • /
    • 2002
  • Objectives : To evaluate the effects on the formation of benzidine-hemoglobin, and benzidine metabolite-hemoglobin adducts, caused by pretreatment with the known xenobiotic metabolism effectors, ethanol and phenobarbital, in rats administered Direct Black 38 dye. Methods : The experimental rats were divided into three groups: a control group, an ethanol group and a phenobarbital group. Rats were pretreated with ethanol (1g/kg) or phenobarbital (80mg/kg) 24 hours prior to the oral administration of Direct Black 38 (0.5mmol/kg), with the control group being administered the same amount of distilled water. Blood samples were obtained from the vena cava of 5 rats from each group prior to, and at 30 min, 3h, 5h, 9h, 12h, 24h, 48h, 72h, 96h, and 144h following the oral administration of Direct Black 38. Directly after sampling the blood was separated into hemoglobin and plasma, with the adducts being converted into aromatic amines by basic hydrolysis. Hydrolyzed benzidiene, monoacetylbenzidine and 4-aminobiphenyl were analyzed by reverse-phase liquid chromatography with an electrochemical detector, The quantitative amount of the metabolites was expressed by the hemoglobin binding index (HBI). Results : In the ethanol group, benzidine-, monoacetylbenzidine-, and 4-aminobiphenyl-HBI were increased to a greater extent than those in the control group. These results were attributed to the ethanol inducing N-hydrgxylation, which is related to the formation of the hemoglobin adduct, In the phenobarbital group, all the HBIs, with the exception of the benzidine-HBI, were increased to a greater extent than those of the control group. These results were attributed to the phenobarbital inducing N-hydroxylation related to the formation of the hemoglobin adduct. The N-acetylation ratio was only increased with the phenobarbital pretreatment due to the lower benzidine-HBI of the phenobarbital group compared to these of the control and ethanol groups. The N-acetylation ratios for all groups were higher than f for the duration of the experimental period. Although the azo reduction was unaffected by the ethanol, it was inhibited by the phenobarbital, The ratio of the benzidine-HBI in the phenobarbital group was lower than those of the ethanol the control groups for the entire experiment. Conclusion : Our results indicate that both ethanol and phenobarbital increase the formation of adducts by the induction of N-hydroxylation, but also induced N-acetylation. Phenobarbital decreased the formation of benzidine-HBI due to the decrease of the azo reduction. These results suggest that the effects or ethanol and phenobarbital need to be considered in the biochemical monitoring of Direct Black 38.

Synthesis of Cobalt(II), Nickel(II) and Copper(II) Complexes with Tetradentate Schiff Base Ligand of o-BSDT $H_2$ and Electrochemical properties in DMSO (네자리 Schiff Base 리간드의 Cobalt(II), Nickel(II) 및 Copper(II) 착물의 합성과 DMSO용액에서 전기화학적 성질)

  • Ki-Hyung Chjo;Jong-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.509-519
    • /
    • 1987
  • The tetradentate Schiff base ligand, 3,4-bis(salicylidene diimine) toluene, have been prepared by the reaction of salicylaldehyde with 3,4-diaminotoluene by Duff method. The Schiff base ligand reacts with Ni(II), Co(II), and Cu(II) ions to form new complexes, [Ni(o-BSDT)${\cdot}(H_2O)_2$], [Co(o-BSDT)${\cdot}(H_2O)$], and [Cu(o-BSDT)]. It seems that Ni(II) and Ni(II) complexes are hexacoordinated with the Schiff base ligand and two molecules of water, while the Cu(II) complexes are tetracoordinated with the Schiff base. The mole ratio of tetradentate Schiff base ligand to metals was found to be 1 : 1. The redox chemistry of these complexes was investigated by polarography and cyclic voltammetry with glassy carbon electrode in DMSO with 0.1M TEAP${\cdot}$[Ni(o-BSDT)${\cdot}(H_2O)_2$] hav EC reaction mechanisms which undergo a irreversible electron transfer followed by a fast chemical reaction. [Co(o-BSDT)${\cdot}(H_2O)_2$] undergoes a reduction of Co(II) to Co(I) and a oxidation of Co(II) to Co(III), and [Cu(o-BSDT)] undergoes a reduction of Cu(II) to Cu(I).

  • PDF

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

Numerical Studies of a Separator for Stack Temperature Control in a Molten Carbonate Fuel Cell (용융탄산염 연료전지 스택 온도 조절을 위한 분리판에 관한 수치 해석 연구)

  • Kim, Do-Hyung;Kim, Beom-Joo;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.305-312
    • /
    • 2011
  • The use of a separator to control stack temperature in a molten carbonate fuel cell was studied by numerical simulation using a computational fluid dynamics code. The stack model assumed steady-state and constant-load operation of a co-flow stack with an external reformer at atmospheric pressure. Representing a conventional cell type, separators with two flow paths, one each for the anode and cathode gas, were simulated under conditions in which the cathode gas was composed of either air and carbon dioxide (case I) or oxygen and carbon dioxide (case II). The results showed that the average cell potential in case II was higher than that in case I due to the higher partial pressures of oxygen and carbon dioxide in the cathode gas. This result indicates that the amount of heat released during the electrochemical reactions was less for case II than for case I under the same load. However, simulated results showed that the maximum stack temperature in case I was lower than that in case II due to a reduction in the total flow rate of the cathode gas. To control the stack temperature and retain a high cell potential, we proposed the use of a separator with three flow paths (case III); two flow paths for the electrodes and a path in the center of the separator for the flow of nitrogen for cooling. The simulated results for case III showed that the average cell potential was similar to that in case II, indicating that the amount of heat released in the stack was similar to that in case II, and that the maximum stack temperature was the lowest of the three cases due to the nitrogen gas flow in the center of the separator. In summary, the simulated results showed that the use of a separator with three flow paths enabled temperature control in a co-flow stack with an external reformer at atmospheric pressure.